Uso de biocerâmico para apicificação em dente com trauma: relato de caso

Use of bioceramic for apexification in a tooth with trauma: case report

Lizia Bezerra Feitosa¹ Joelson Rodrigues Brum² Eliane Oliveira Aranha Ribeiro³

Resumo

O trauma dental é uma ocorrência involuntária que pode acometer pacientes de ambos os sexos e várias idades, passando desde uma concussão, pela fratura e exposição pulpar até a avulsão dental. Objetivo: descrever um caso clínico do efeito do biocerâmico em dente com ápice reabsorvido devido a traumatismo. Relato de caso: Paciente do sexo masculino, 26 anos, hipertenso, que procurou o serviço de urgência da Policlínica de Odontologia da Universidade do Estado do Amazonas (POUEA), apresentando como queixa principal dor difusa e espontânea em dente na região anterior da mandíbula com histórico de traumatismo dentário, tendo fraturado a coroa sem procurar atendimento odontológico na época. No exame clínico bucal observou-se perda da coroa do elemento 41, presença de dor à palpação em fundo de vestíbulo, com resposta positiva aos testes de percussão vertical e horizontal, assim como ausência de sensibilidade ao frio. Na radiografia periapical do elemento foi visto que o dente encontrava-se com o ápice reabsorvido. O tratamento foi realizado em três sessões, sendo feito o acesso do elemento, instrumentação e preenchimento do canal com biocerâmico Biodentine para apicificação. Posteriormente foi feita a proservação clínica radiográfica do paciente onde observou-se início de neoformação óssea apical e ausência de sintomatologia. Consideração final: biocerâmicos possuem bioatividade capaz de formar hidroxiapatita promovendo a reparação apical.

Palavras-chaves: traumatismos dentários; reabsorção da raiz; silicato de cálcio; endodontia.

http://dx.doi.org/10.5335/rfo.v29i1.15990

¹ Graduanda em Odontologia, Universidade Estadual do Amazonas, Manaus, Amazonas, Brasil.

² Graduado em Odontologia; Doutor em Clínica Odontológica, Manaus, Amazonas, Brasil.

³ Graduada em Odontologia; Doutora em Educação, Manaus, Amazonas, Brasil.

Introdução

O traumatismo dentário consiste em uma lesão originada por algum fator externo que causou dano ao dente e aos tecidos adjacentes da região acometida e pode ter como consequência a reabsorção externa inflamatória¹⁻². Esse processo acarreta a perda de cemento, criando uma abertura no ápice da raiz, o que torna o tratamento um desafio para os dentistas³. Em pacientes com doenças sistêmicas como a hipertensão, o tratamento odontológico torna-se mais complexo, devido a inflamação durar um tempo prolongado⁴⁻⁵.

Um material reparador deve ser atóxico, não genotóxico, radiopaco, biocompatível, não reabsorvível, insolúvel em fluidos teciduais e dimencionamente estável, além de interromper a comunicação entre canal radicular e tecidos circundantes⁶. Por muitos anos, casos de dentes com ápices abertos e necrose pulpar eram tratados com hidróxido de cálcio como material reparador, o que demandava múltiplas consultas e uma tendência das raízes tratadas à incidência de fraturas⁷⁻⁸. Em busca de um material reparador ideal surgiram os cimentos biocerâmicos⁹.

Cimentos resultantes da combinação entre silicato de cálcio, fosfato de cálcio monobásico, óxido de zircônio, hidróxido de cálcio e alguns agentes espessantes ⁹. Esses materiais são usados para uso odontológico, apresentando phalcalino, atividade antibacteriana, radiopacidade e biocompatibilidade ¹⁰. Os biocerâmicos foram introduzidos na endodontia como material de obturação do canal radicular, na retrobturação e como cimento reparador ¹¹. Essa última utilização se deve principalmente pela capacidade bioativa desse grupo, ou seja, são capazes de formar uma camada semelhante à apatita, logo podem ser empregados em casos de regeneração pulpar e dos tecidos duros ^{9,11}. Essa habilidade se deve a liberação de hidróxido de cálcio

quando o biocerâmico entra em contato com fluidos teciduais induzindo os tecidos circundantes a promover sua regeneração⁶.

O primeiro cimento biocerâmico desenvolvido foi o Agregado de Trióxido Mineral (MTA), criado pelo Doutor Mahmoud Torabinejad, possui alta capacidade de promover vedação superior e biocompatibilidade, mas pode acarretar a descoloração do dente, tem difícil manipulação e tempo de presa prolongado ⁹. Para corrigir essas deficiências surgiram outros biocerâmicos como o Biodentine, o qual teve cloreto de sódio acrescentado a sua fórmula para diminuir o tempo de presa e óxido de zircônio para evitar a descoloração ^{9,11}. Quanto à manipulação, no Biodentine, as partículas de silicato tricálcico são mais finas em conjunto com o acréscimo do polímero hidrofílico, facilitando o manuseio ⁷.

Esse relato de caso tem como intuito tratar o elemento o dental 41 que apresenta ápice reabsorvido devido a traumatismo dentário analisando a eficiência do material biocerâmico biodentine.

Relato de caso

O presente trabalho foi aprovado pelo Comitê de Ética em Pesquisa da Universidade do Estado do Amazonas (CAAE 66255722.0.0000.5016). Paciente, sexo masculino, 26 anos de idade, hipertenso, procurou atendimento na policlínica odontológica da Universidade do Estado do Amazonas (POUEA) relatando dor difusa e espontânea em um dente na região anterior da mandíbula. Pelo relato contatou-se que esse dente possuía um histórico de traumatismo. Há dez anos fraturou o elemento 41 com perda da coroa em uma queda da própria altura, mas não procurou atendimento odontológico.

No exame extra oral, o paciente apresentou dor à palpação na região anterior da mandíbula, sendo ratificado pela presença de dor na palpação em fundo de vestíbulo, respondeu positivamente à percussão horizontal e vertical, e apresentou ausência de

sensibilidade ao frio. Como exame complementar, foi realizada uma radiografia periapical, na qual pode-se perceber que o ápice do dente 41 encontrava-se reabsorvido (Figura 1).

Figura 1. Radiografia inicial do elemento 41

O tratamento endodôntico foi realizado em três sessões. Na primeira, foram realizados anamnese, exame clínico, radiografia inicial, aferição da pressão arterial, punção aspirativa intraoral com drenagem de secreção purulenta e acesso do elemento 41 com colocação de tricresol como medicação intracanal finalizando com restauração provisória com ionômero de vidro. O laudo histopatológico da punção aspirativa, teve como diagnóstico sugestivo de cisto radicular abscedido (abscesso fênix).

A segunda consulta aconteceu 3 meses depois, foi aferida a pressão arterial do paciente. Feita a anestesia com prilocaína, acompanhado posteriormente do isolamento absoluto, retirado a restauração provisória e a medicação intracanal onde foi observado a continuidade da secreção purulenta (Figura 2). Foi realizada irrigação abundante com clorexidina 2% seguida de lavagem com soro fisiológico. A instrumentação foi feita com limas k da segunda série (Figura 3). A cada troca de lima foi feita a irrigação com

clorexidina a 2% e a *smear layear* foi removida após irrigação com EDTA 17%. Para uma melhor limpeza do canal foi utilizado a easy clean, depois foi feito a secagem do canal com cone de papel absorvente e introdução de hidróxido de cálcio PA como medicação intracanal seguido de bolinha de algodão, cotosol e ionômero de vidro.

Figura 2. Secreção purulenta saindo do canal.

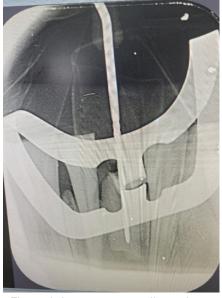


Figura 3. Instrumentação lima 70 em 12 mm. Finalizada em lima 55 com 13 mm.

A terceira consulta foi realizada dois meses depois, sendo aferida pressão arterial, anestesia, isolamento absoluto, retirada a restauração provisória, cotosol, bolinha de algodão e o hidróxido de cálcio, não havendo presença de secreção purulenta. Irrigação com clorexidina 2%, soro fisiológico e EDTA 17% juntamente com a *easy clean*. Remoção do excesso de umidade com cone de papel absorvente, conforme orientação do fabricante, seguido da espatulação do biodentine em placa de vidro. Ao obter a consistência de massa de vidraceiro, foi colocado no canal utilizando calcadores. Após o preenchimento do canal com o biocerâmico foi colocado o cotosol e feito uma restauração provisória com resina composta (Figura 4). Na radiografia periapical foi

observado que o canal encontrava-se totalmente preenchido. Nesta oportunidade observou-se também uma lesão periapical no elemento 31 (Figura 5).

Figura 4. Canal preenchido com biocerâmico, cotosol e resina composta.

Figura 5. Radiografia evidenciando elemento 41 com canal totalmente preenchido e 31 com uma lesão periapical.

Após exames, foi comprovado que o elemento 31 precisava de tratamento endodôntico, sendo feito o acesso do elemento, odontometria, instrumentação e obturação. Nas consultas de proservação, o paciente foi analisado clínica e radiograficamente. Clinicamente, os tecidos periodontais apresentavam-se em condições normais com ausência de sintomatologia dolorosa. Radiograficamente, observamos a diminuição da lesão periapical e o início do processo de neoformação óssea (Figura 6). Paciente encaminhado para disciplina de Prótese para colocação de pino de fibra de vidro e confecção da prótese parcial fixa unitária.

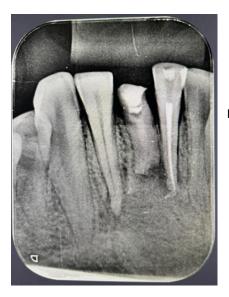


Figura 6. Radiografia de proservação após quatro meses.

Discussão

O traumatismo dentário está relacionado a várias causas como quedas, acidentes ciclísticos, práticas de esportes e agressões. Esse tem uma maior prevalência em crianças e adultos jovens, ocorrendo mais em indivíduos do sexo masculino¹². A gravidade do trauma depende dos tecidos envolvidos e do tempo decorrido desde a lesão até o tratamento, tendo em vista que as complicações podem aparecer logo após o evento traumático ou até mesmo anos depois ².

O diagnóstico de trauma em sua maioria ocorre de maneira tardia devido à falta de conhecimento da população sobre a lesão. A procura pelo cirurgião dentista geralmente ocorre somente após o surgimento de sinais e sintomas como mobilidade dental, escurecimento do dente ou dor durante a mastigação¹³. O presente caso, o trauma dento alveolar ocorreu há dez anos atrás devido a uma queda, havendo perda da coroa dental, mas o paciente procurou atendimento apenas ao sentir dor.

A reabsorção apical inflamatória externa acontece ao redor de ápices radiculares dos dentes com polpas infectadas resultante de uma lesão inicial que teve contaminação microbiana levando a uma reação imunológica, essa pode causar maior destruição tecidual tendo como uma de suas consequência a formação de abscesso^{2,14}. O abscesso fênix é gerado pelo reaparecimento da inflamação e aumento da radiolucidez devido a uma piora da infecção pulpar a partir de um desequilíbrio que favorece a flora microbiana¹⁵. Essa reabsorção é consequência do desequilíbrio entre a reabsorção (osteoclastos) e a tentativa de reparação (osteoblastos) causando perda de cemento com túbulos dentinários expostos sendo uma comunicação entre o canal radicular e do ligamento periodontal³.

Em casos de dentes com o ápice reabsorvido por inflamação é necessário induzir o fechamento artificial do forame apical através da apicificação. O tratamento pode ser

feito a partir de trocas múltiplas com hidróxido de cálcio ou uso de cimento biocerâmico¹⁶. O material escolhido no caso clínico apresentado é o biodentine, esse cimento assim como os outros da classe dos biocerâmicos apresenta capacidade biológica bioativa, ou seja, apresentam potencial de aumentar a diferenciação cementogênica e promover o reparo ou regeneração de defeitos periodontais oriundos de lesões endodônticas, possuem regulação positiva sobre marcadores osteogênicos mostrando sua capacidade de regeneração óssea¹⁷.

Os biocerâmicos liberam hidróxido de cálcio durante sua hidratação e há a formação de uma união química entre a dentina e o cimento, o que reduz o risco de fraturas^{10,18}. A união entre o cimento derivado do silicato de cálcio e a dentina depende da presença de umidade nos túbulos dentinários e o ressecamento excessivo do canal radicular é contraindicado. Portanto, para retirar o excesso de umidade foi utilizado apenas cone de papel absorvente, evitando uma falha no processo de hidratação¹⁹.

Tendo em vista os casos de lesões reabsortivas inflamatórias externas, o presente caso após o tratamento endodôntico com o cimento biocerâmico Biodentine promoveu um Ph alcalino e se manteve estável, tendo uma eficiente liberação de cálcio e apresentando uma radiopacidade adequada. Pela adição do cloreto de sódio em sua composição, o dente não sofreu descoloração após o procedimento. Contudo ainda há estudos a serem realizados a respeito do papel dos materiais biocerâmicos na regeneração de tecidos periapicais no sucesso da terapia de reparo endodôntico¹¹.

Considerações finais

As lesões traumáticas representam um desafio global para o cirurgião-dentista e para um prognóstico favorável é importante intervir no momento adequado. O relato de caso presente a reabsorção externa inflamatória foi detectada tardiamente levando a abertura do ápice. Os cimentos biocerâmicos devido a suas capacidades bioativas e

biocompatíveis são indicados nessas situações para apicificação. Após 4 meses de controle clínico e radiográfico pode-se observar através das imagens indicativo de início de neoformação, e ausência de sintomatologia, o paciente foi encaminhado para colocação de pino de fibra de vidro e confecção de coroa parcial fixa de modo a preservar o dente de forma estética e funcional na cavidade oral.

Abstract

Dental trauma is an involuntary occurrence that can affect patients of both sexes and different ages, ranging from concussion, fracture and pulp exposure to tooth avulsion. Objective: describe a clinical case of the effect of bioceramic on a tooth with a resorbed apex due to trauma. Case report: Male patient, 26 years old, hypertensive, who sought the emergency service of the Dental polyclinic of the state of Amazonas (POUEA), presenting as his main complaint diffuse and spontaneous tooth pain in the anterior region of the jaw with history of dental trauma, having fractured the crown without seeking dental care at the time. In the oral clinical examination, loss of the crown of element 41 was observed, presence of pain on palpation at the bottom of the vestibule, with a positive response to vertical and horizontal percussion tests, as well as absence of sensitivity to cold. On the periapical radiograph of the element, it was seen that the tooth had its apex resorbed. The treatment was carried out in three sessions, with access to the element, instrumentation and filling of the canal with Biodentine bioceramic for apexification. Subsequently, clinical radiographic follow-up of the patient was carried out, where the beginning of apical bone neoformation and absence of symptoms were observed. Final consideration: bioceramics have bioactivity capable of forming hydroxyapatite, promoting apical repair.

Keyswords: Tooth Injuries; Root Resorption; Calcarea Silicata; Endodontics.

Agradecimentos

A Deus que me guiou por esse caminho. A minha família que me apoiou nos momentos difíceis. A minha colega, Adrielly Lorena Pinheiro, pela parceria.

Agradeço a policlínica da Universidade do estado do Amazonas por ter contribuído com o espaço para a realização do trabalho e com a doação do material Biodentine.

Reservo também meus agradecimentos aos meus orientadores, Joelson Rodrigues Brum e Eliane Ribeiro Aranha por todos os ensinamentos e disponibilidade em tirar dúvidas.

Referências

- Cerqueira JDM, Lima P de SS, Helfenstein AA, Freitas AM de JO, Santos FM dos, Carneiro KH da S, et al. Tratamento endodôntico conservador em um dente traumatizado com rizogênese incompleta: relato de caso. Research, Society and Development. 3 de julho de 2022;11(9):e18811931717.
- Lin S, Moreinos D, Wisblech D, Rotstein I. Regenerative endodontic therapy for external inflammatory lateral resorption following traumatic dental injuries: Evidence assessment of best practices. International Endodontic Journal. John Wiley and Sons Inc; 2022. Vol.55 p. 1165–76.
- 3. De jesus CK. Reabsorção radicular externa inflamatória associada a traumatismo dental: relato de caso. Juazeiro do Norte: Unileão centro universitário curso de graduação em odontologia. Dezembro de 2020. Bacharel em Odontologia. Disponível em: https://sis.unileao.edu.br/uploads/3/ODONTOLOGIA-2024/O999.pdf
- Dash G, Mishra L, Singh NR, Behera R, Misra SR, Kumar M, Sokolowski K, Agarwal K, Behera SK, Mishra S, Lapinska B. Prevalence and Quality of Endodontic Treatment in Patients with Cardiovascular Disease and Associated Risk Factors. J Clin Med. 2022 Oct 13;11(20):6046. doi: 10.3390/jcm11206046. PMID: 36294367; PMCID: PMC9604757.
- 5. Bezerra CT, Breseghello I, Faria MD, Antônio RC. A consulta odontológica de pacientes hipertensos, diabéticos e gestantes: análise do conhecimento e conduta dos cirurgiões-dentistas. Unifunec Ci. Saúde e Biol. 5 de novembro de 2020;3(6):1-14. Disponível em: https://seer.unifunec.edu.br/index.php/rfce/article/view/4094
- 6. Zafar K, Jamal S, Ghafoor R. Bio-active cements-mineral trioxide aggregate based calcium silicate materials: A narrative review. Vol. 70, Journal of the Pakistan Medical

- Association. Pakistan Medical Association; 2020. p. 497–504. doi: 10.5455/JPMA.16942. PMID: 32207434.
- Guerrero F, Mendoza A, Ribas D, Aspiazu K. Apexification: A systematic review. J Conserv Dent. 2018 Sep-Oct;21(5):462-465. doi: 10.4103/JCD.JCD_96_18. PMID: 30294103; PMCID: PMC6161512.
- Staffoli S, Plotino G, Torrijos BGN, Grande NM, Bossù M, Gambarini G, et al. Regenerative endodontic procedures using contemporary endodontic materials. Vol. 12, Materials. MDPI; 2019 Mar 19;12(6):908. doi: 10.3390/ma12060908. PMID: 30893790; PMCID: PMC6471897.
- Gama U. O Uso dos Cimentos Biocerâmicos na endodontia. Revista Cathedral [Internet].
 2dez.2021 [citado 21jun.2024];3(4):44-. Available from: http://cathedral.ojs.galoa.com.br/index.php/cathedral/article/view/385
- 10. França GM de, Pinheiro JC, Morais EF de, Leite RB, Barboza CAG, Bueno CSP. Uso dos biocerâmicos na endodontia: revisão de literatura. Rev. Ciênc. Saúde Nova Esperança [Internet]. 31º de agosto de 2019 [citado 21º de junho de 2024];17(2):45-5. Disponível em: https://revista.facene.com.br/index.php/revistane/article/view/197
- 11. Andrade KG, Gomes-cornélio AL. Cimentos biocerâmicos na endodontia. [Trabalho de conclusão de curso]. Centro Universitário do Planalto Central Aparecido dos Santos, 2020. Bacharel em Odontologia. Disponível em: https://dspace.uniceplac.edu.br/handle/123456789/477
- 12. Maluf LS, Santiago MC, Paim PF, Rodrigues dos Santos LN, Aucélio RN. Utilização do BIO-C TEMP® como medicação intracanal em tratamento de um dente permanente avulsionado e reimplantado tardiamente: relato de caso. Rev. da Fac. de Odontologia, UPF. 30 de setembro de 2021. 25(3):370-7. Disponível em: https://seer.upf.br/index.php/rfo/article/view/11188

- 13. GOMES BRANQUINHO T, Mendonça Gonçalves A, Quadros Tonelli S, Souza Pardini D. Abordagem de incisivos centrais superiores traumatizados relato de caso. Rev. da Fac. de Odontologia, UPF . 19 de dezembro de 2023 [citado 16º de maio de 2024];28(1). Disponível em: https://seer.upf.br/index.php/rfo/article/view/15369
- 14. Gonçalves FN, Bezerra MS, de Brito EH, Benigno BG, Lopes MC, Rodrigues RE et al. Tratamento endodôntico em dente com abscesso dentoalveolar: um relato de caso. Ver. CPAPQV- Centro de Pesquisa Avançadas em Qualidade de Vida, vol.16, nº1, ano 2024, p.2. Disponível em: revista.cpaqv.org/index.php/CPAQV/article/view/1672/1190
- 15. Cabral LN, Brazao-Silva MT, Silva ALC, Silva LNGM, Oliveira FP. Um abordagem compreensiva e ilustrativa da periodontite apical crônica, revisão de literatura. Sci Invest Dent. Jan de 2020;25(1): 77-96. Disponível em: https://doi.org/10.37951/2317-2835.2020v25i1.p77-96
- 16. Guimarães MA, Rodrigues H, Tonelli SQ, Pardini DS, Silveira FF. Apexification in a traumatized tooth with mineral trioxide aggregate: an interesting case report of root formation. Revista Gaúcho Odontologia. 2023;71:e20230034. https://doi.org/10.1590/1981-86372023003420220085
- 17. Sanz JL, Guerrero-Gironés J, Pecci-Lloret MP, Pecci-Lloret MR, Melo M. Biological interactions between calcium silicate-based endodontic biomaterials and periodontal ligament stem cells: A systematic review of in vitro studies. Int Endod J. 2021 Nov;54(11):2025-2043. doi: 10.1111/iej.13600. Epub 2021 Aug 20. PMID: 34338339.
- 18. Baccega F, Dal Bello Y. Efeito de diferentes irrigantes finais na resistência união de um cimento de silicato de cálcio – estudo in vitro. Rev. da Fac. de Odontologia, UPF [Internet]. 6º de novembro de 2023 [citado 31º de maio de 2024];28(1). Disponível em: https://seer.upf.br/index.php/rfo/article/view/15100

- 19. Disconzi Caetano G, Freitas de Machado Costa N, Padoin K, Camponogara Bohrer T, Pagliarini Buligon M, Souza Bier CA, Morgental RD. Qualidade da obturação e resistência de união de cimentos endodônticos à dentina humana e bovina. Rev. da Fac. de Odontologia, UPF [Internet]. 6º de novembro de 2023 [citado 31º de maio de 2024];28(1). Disponível em: https://seer.upf.br/index.php/rfo/article/view/15084
- 20. Sanz JL, López-García S, Rodríguez-Lozano FJ, Melo M, Lozano A, Llena C, Forner L. Cytocompatibility and bioactive potential of AH Plus Bioceramic Sealer: An in vitro study. Int Endod J. 2022 Oct;55(10):1066-1080. doi: 10.1111/iej.13805. Epub 2022 Aug 11. PMID: 35950780; PMCID: PMC9541143.
- 21. Song W, Li S, Tang Q, Chen L, Yuan Z. *In vitro* biocompatibility and bioactivity of calcium silicate-based bioceramics in endodontics (Review). Int J Mol Med. 2021 Jul;48(1):128. doi: 10.3892/ijmm.2021.4961. Epub 2021 May 20. PMID: 34013376; PMCID: PMC8136140.
- 22. Youssef AR, Emara R, Taher MM, Al-Allaf FA, Almalki M, Almasri MA, et al. Effects of mineral trioxide aggregate, calcium hydroxide, biodentine and Emdogain on osteogenesis, Odontogenesis, angiogenesis and cell viability of dental pulp stem cells. BMC Oral Health. 2019 Jul 2;19(1):133. doi: 10.1186/s12903-019-0827-0. PMID: 31266498; PMCID: PMC6604301.
- 23. Silva LLCE, Cosme-Silva L, Sakai VT, Lopes CS, Silveira APPD, Moretti Neto RT, Gomes-Filho JE, Oliveira TM, Moretti ABDS. Comparison between calcium hydroxide mixtures and mineral trioxide aggregate in primary teeth pulpotomy: a randomized controlled trial. J Appl Oral Sci. 2019 May 20;27:e20180030. doi: 10.1590/1678-7757-2018-0030. PMID: 31116277; PMCID: PMC6534371.

Endereço para correspondência:

Lizia Bezerra Feitosa Rua Nelson Batista de Sales, nº5, Bairro Aleixo CEP 69083120 – Manaus, Amazonas, Brasil

Telefone: (92)98117-1189 E-mail: lbf.odo20@uea.edu.br

Recebido em: 21/06/2024. Aceito: 03/08/2024.