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ABSTRACT 

This paper presents a study on the variation of strain rate influence with the scale 
effect in quasi-brittle materials. Works in the literature report an increase of dynamic 
resistance with strain rate. To study this relation, a numerical model that combines the Finite 
Element Method and the Lattice Discrete Element Method is employed. This mixed model 
was implemented on the commercial software Abaqus/Explicit. The samples are prepared 
with FEM at the extremity and LDEM for the central part, which has a reduction in the cross-
section, so the rupture occurs in the middle. In the simulations, four model specimens with 
dimensional variations were subjected to direct tensile testing with different strain rates. The 
results showed that with the increase of applied strain rate, the resistances also increase and 
the body dimension influences this behavior. The variation of the tensile strength is found 
without modifications on the elemental constitutive relationship or material parameters. At 
last, a method that could lead to an independent relationship between the dynamic 
intensification and the stain rate of scale effect is also proposed. 
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1. INTRODUCTION 

Concrete structures with special applications, such as nuclear reactor contention, 

protection shelters and protection plates against explosions, among others, can suffer loading 

with high tension or strain rates, varying from 10 s-1 to 1000 s-1. Vehicle collisions, explosion 

impacts and earthquakes can also generate high tension or strain rates, at which the material 

apparent resistance can significantly increase. 

Malvar and Crawford (1998) presented a data collection to sustain that in concrete, the 

dynamic increase factor (DIF), i.e. the ratio of the dynamic to static strength, is a bilinear 

function of the strain rate (in a log-log plot): below 10e-6 s-1 there is no increase in the strain 

rate, while the slope changes when the rate reaches 1 s-1.  

Several works evaluate the effect of the strain rate in concrete with different tests and 

different specimen sizes. Among others, Brara et al. (2001) performed tests experimentally in 

wet concrete based on the Hopkinson compression bar; Wu et al. (2005) performed 

experimental tests and numerical simulations with the finite element method and Weerheijm 

and Van Doormaal (2007) also measured the tensile failure of concrete at high loading rates 

with an alternative split Hopkinson bar test methodology. Lu et al. (2014) submitted recycled 

aggregate concrete specimens to compressive loading based on split Hopkinson pressure bar 

tests, finding that impact properties of recycled aggregate concrete exhibit strong strain-rate 

dependency, that increases approximately linearly with strain-rate. Moreover, Ibrahim et al. 

(2016) investigated the stress-strain characteristics of hybrid fiber reinforced concrete 

composites under dynamic compression using the Split Hopkinson Pressure Bar getting that 

degree of fragmentation of composite specimens increases with increase in the strain rate. 

Lu and Li (2011) reported that, at high strain rates, the triaxiality effect on the increase 

of the dynamic tensile strength in concrete is negligible. According to them, the increase in 

tensile strength is associated with the intrinsic properties of the material, instead of “structural 

effects”; for this reason, the effect can be mostly assigned to micro fissure inertia.  

An important aspect evaluated by Riera et al. (2011), for both physical or numerically 

simulated displacement controlled tensile tests, is that it can only be considered conclusive the 

results where the ratio between the displacement rate and the propagation rate of the 

longitudinal wave Cp does not exceed the strain εmin, at which the damage starts to form in the 

material. Moreover, the minimal strain has to be higher than the critical deformation failure 

(εp), at which the damage occurs. The study concludes that a strain rate threshold that varies 
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with the material properties and the specimen size has to be considered to validate the 

simulations. 

Another aspect to be considered is that the tests in the engineering practice operate on 

models and specimens extremely reduced in comparison with the real structures. These tests 

are essential to evaluate structure or composition material behaviors, and for this reason, it is 

essential to consider the scale effect in order to transfer the experimental results to the real 

structure scale.  

The size effect is a phenomenon characterized by structural behavior changes when 

dimensional variations occur. This phenomenon can alter the main parameters that govern the 

mechanical solid behavior, such as stress, strain and fatigue material resistance, being that 

these parameters decrease when the structure size increases.  

On the topic of size effect of quasi-brittle materials, several contributions can be found 

in the literature; among others, it is important to highlight the works of Carpinteri and 

coworkers. Carpinteri presented his basic ideas in his book (Carpinteri, 1986), and few years 

later, in Carpinteri and Chiaia (1997), he introduced the multifractal law. This theory was 

applied in different contests, for example in Carpinteri et al. (2003), and it will be used in one 

of the applications carried out in this work. Another classical approach to understand the size 

effect was proposed by Bažant and Chen (1997). An interesting discussion about the two 

theories could be followed in Bažant and Yavari (2005) and in Carpinteri et al. (2007).  

Different methods are available in the literature to study these effects. There are 

several aspects to be considered in applying a classical approach, as finite element method 

(FEM) and boundary element method (BEM), to solve a problem where a fracture could 

appear. For this reason, a combination between these methods and the cohesive interface 

technique (Xu and Needleman, 1994), or the extended finite element formulation (Moes and 

Belytschko, 2002) should be applied to bypass the hypothesis of a continuum medium used in 

the classical methods. Cotsovos and Pavlovic´ (2008), Ožbolt et al. (2014) and Guo et al. 

(2017), among others, use the Finite Element Method to model concrete tensile failure under 

high loading rates. 

On the other hand, the discrete element approach is another way to solve the problem, 

as it is more natural to deal with fracture and fragmentation. The works of Li and Liu (2002), 

Liu and Liu (2007) and Silling and Lehoucq (2010) relate with this approach.  

Lattice Models, of which the formulation used in the present work is a special case, 

belong to this Discrete Element Method group. Basically, the solid is modeled by means of an 

array of uniaxial elements, which interconnect nodal masses with two or three degrees of 
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freedom. The stiffness of these elements can be determined from the mechanical properties of 

the anisotropic solid to be represented. Schlangen and van Mier (1995), Rinaldi and Lai 

(2007), Rinaldi (2009; 2011) and Mastilovic (2011) employ different versions of the Lattice 

approach, while Hwang et al. (2016, 2017) and Cusatis (2011) also use Lattice Models to 

simulate concrete tensile failure under high loading rates. 

The method used in the current work was proposed originally by Riera (1984). In this 

formulation, the lattice has a regular or quasi-regular arrangement, and no rotations are 

considered within the connections. In the lattice discrete element method (LDEM) the masses 

are concentrated in the nodes, interconnected by one-dimensional elements with constitutive 

relation, based on the bilinear law proposed by Hillerbog (1978), which allows to model the 

fracture and the anisotropic damage with relative facility. 

Riera et al. (2011) employed LDEM to carry out simulations at high strain rates for 

concrete. An increase in tensile strength was observed without any changes in the constituent 

equations or material parameters. Simulations on the size effect can be found in several 

applications, as in Miguel et al. (2010) and Iturrioz et al. (2009) for concrete beam; Riera et 

al. (2014) for rocks dowels; Kosteski et al. (2011) for the analysis of crack propagation in 

solids. 

With the aim to develop a flexible modeling tool, LDEM is implemented using 

Abaqus/Explicit (Dassault Systèmes, Simulia, 2013). This allows to combine the LDEM with 

the capabilities of Abaqus for contact and eigenvalue analyses, and for the inclusion of rigid 

parts into the model assembly. The validation of this implementation is found in Kosteski et 

al. (2010); this approach was used to simulate reinforced concrete plates subjected to impact 

in Kosteski et al. (2014) and to model the falling-weight impact test of PMMA specimens in 

Kosteski et al. (2015). 

In this work, a combination of the lattice discrete element method (LDEM) with the 

finite element method (FEM) will be used to perform direct tensile tests for different size 

specimens and strain rates; the results will be evaluated and compared with the results present 

in the literature.  

 

2. THE LATTICE DISCRETE ELEMENT METHOD IN FRACTURE PROBLEM  

The lattice discrete element method (LDEM), suggested by Riera (1984), consists in 

representing the continuum through a spatial arrangement of bars, whose mass is concentrated 

at the truss nodes. The basic cubic module, as shown in Figure 1, is composed by 20 bar 

elements and 9 interconnected nodes. Each node presents three degrees of freedom 
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corresponding to the three components of the displacement vector in a global reference 

system. 

 
Figure 1 (a) Basic DEM cubic module. (b) Hillerborg´s constitutive law adopted for concrete. 

 

The discrete element representation of the orthotropic continuum was adopted to solve 

structural dynamic problems by means of explicit and direct numerical integration of the 

equations of motion, assuming the mass lumped at the nodes. The equivalence between an 

orthotropic elastic solid, with principal orthotropic axes oriented in the direction of the 

longitudinal elements, and the cubic array model was demonstrated by Nayfeh and Hefzy 

(1978), within the framework of linear elasticity. 

For the basic geometric arrangement used in this version of LDEM, the length of 

longitudinal and diagonal elements are 𝐿𝐿𝑛𝑛 and 𝐿𝐿𝑑𝑑 = �3𝐿𝐿𝑛𝑛/2, respectively. The equations that 

relate the equivalent bar stiffness and properties of an isotropic elastic solid are presented as 

follows: 

𝐸𝐸𝐸𝐸𝑛𝑛 = 𝐸𝐸𝐸𝐸𝐸𝐸2,                             𝐸𝐸𝐸𝐸𝑑𝑑 = 𝐴𝐴𝑛𝑛2√3
3

 (1) 

Where Young’s module is denoted by E, L is the length of longitudinal elements, 𝛿𝛿 =
9𝜈𝜈

(4−8𝜈𝜈) and 𝜙𝜙 = 9+8𝛿𝛿
18+24𝛿𝛿

 are coefficients that relate the parameters defined for longitudinal and 

diagonal elements with the linearly elastic solid properties. Poisson’s coefficient ν appears in 

the definition of factor δ. The LDEM model used herein is completely equivalent to an 

isotropic elastic solid when ν = 0.25. For other values of Poisson’s ratio, small differences can 

appear, as discussed by Jikov and Yates (2012). The relations between the properties of 

elastic solids and LDEM element stiffness are further examined by Kosteski et al. (2012). 
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It is worth noting that, since nodal coordinates are updated at every time step, large 

displacements are naturally accounted for. At the same time, the LDEM has a natural ability 

to model cracks. They can be introduced into the models as pre-existent features or as the 

irreversible effect of crack nucleation and propagation. Crack nucleation and propagation 

requires non-linear constitutive models for material damage, in order to allow the elements to 

break when they attain a critical condition.  

Each bar element submitted to traction in this model follows the bilinear softening law 

proposed by Hillerborg (1978), adopted for the representation of concrete material (Figure 1 

b). In the case of compressive loads, the material behaves as linear elastic. Thus, the failure in 

compression is induced by indirect traction. 

The area under the curve is equivalent to the energy density that is necessary to break 

the element. From linear fracture mechanics, the relationship between the energy density and 

the properties of the model in LDEM can be expressed as (2). 

∫ 𝐹𝐹(𝜀𝜀)𝑑𝑑𝑑𝑑𝜀𝜀𝑟𝑟
0 = 𝐺𝐺𝑓𝑓𝐴𝐴𝑖𝑖

𝑓𝑓

𝐿𝐿𝑖𝑖
 (2) 

In the first term of this expression, F is the force and ε is the strain of an element. In 

the second term, Gf is the specific fracture energy, a material property, L is the module edge 

length and Af is the equivalent fracture area defined in order to satisfy the condition that the 

energy dissipated through the continuum fracture and by the discrete representation are 

equivalent. 

The angular coefficient of the elastic part represents the equivalent elastic modulus, 

that is the product between cross-section area and the Young modulus EAi. A basic parameter 

of the bilinear constitutive relationship is given by:  

𝜀𝜀𝑝𝑝 = �
𝐺𝐺𝑓𝑓
𝐸𝐸𝑑𝑑𝑒𝑒𝑒𝑒

 (3) 

In equation (2), εp represents the strain peak, where Gf is the material toughness and 

deq the characteristic length, which is considered a material property. The strain εr is related to 

the ultimate load of the element and is defined by 

ε𝑟𝑟 = 𝜀𝜀𝑝𝑝𝑑𝑑𝑒𝑒𝑒𝑒(𝐴𝐴𝑖𝑖
𝑓𝑓

𝐴𝐴𝑖𝑖
)(2
𝐿𝐿𝑖𝑖

) (4) 

It should be noted that εr depends on the material properties and also on the 

discretization level. Figure 1b shows the bilinear relationship where the strains εp and εr are 

indicated.  
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It is important to point out that the specific fracture energy Gf is proportional to the 

area below the bilinear elemental constitutive law. Hence, when the damage energy density 

equals the fracture energy, the element fails and loses its load carrying capacity.  

The intrinsic inhomogeneities of materials are represent by random fields introduced 

by variations in the properties E, ρ e Gf, based on three-dimensional stochastic fields proposed 

by Shinozuka and Deodatis (1991). The distribution of the random field and its correlation 

length can also be fit. An explanation of how this can be performed is found, among other, in 

Miguel et al. (2008), Puglia et al. (2010) or Kosteski et al. (2012). 

In this work, it is admitted that Gf is a 3D random field, herein assumed to have a 

Weibull probability distribution with defined mean, coefficient of variation and correlation 

length. This postulation is very important because the random field is independent of the 

LDEM mesh. For this reason, the simulation results do not change when the LDEM mesh is 

modified and the modeled random field remains constant (Kosteski et al. 2012, Birck et al. 

2018). 

The model space is encircled by a regular prism. This prism is subdivided in equal 

minor prism of equal size to the correlation lengths (lcx, lcy, lcz) of the random field. Every 

vertex of these prisms, herein called poles, is associate to a statistical independent random 

value of the Gf field, with a Weibull probability distribution function with desired mean and 

coefficient of variation. In this way, the special random field of toughness Gf is defined. 

Then, the prismatic domain of the random field and the LDEM mesh domain are 

superimposed. To each LDEM element is assigned a property, Gf in this work, linearly 

interpolated from its eight nearest poles, considering the barycenter of each LDEM element as 

weights for this calculus. In this way, if the mesh changes, the interpolated values will be kept 

consistent in the same regions. This process of tridimensional interpolation was first 

employed in LDEM applications by Miguel et al. (2008). 

All the explanation related to this method can be found, between others, in Kosteski et 

al. (2009, 2011, 2012, 2014, 2015), Iturrioz et al. (2009), Miguel et al. (2010) or Riera et al. 

(2011, 2014). 

 

2.1 LDEM in Abaqus-Explicit 

In order to analyze structures with complex geometry or non-standard boundary 

conditions, the Lattice Discrete Element Method (LDEM) was introduced in the 

ABAQUS/Explicit (Dassault Systèmes, 2013) system. The LDEM is implemented using 2-

node linear-displacement truss elements (T3D2) for the model discretization.  
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The non-linear constitutive law is implemented through the smeared model due to 

Hillerborg (1978) by means of the *BRITTLE CRACKING, *BRITTLE SHEAR and 

*BRITTLE FAILURE keywords. *BRITTLE CRACKING is set to TYPE=STRAIN to 

specify the critical failure strain (point A in Figure 1b) and the limit strain (point B in Figure 

1b); *BRITTLE SHEAR is specified to complete the model data only, as Mode-II shear 

stresses are not induced in bar elements; *BRITTLE FAILURE is used to remove the failed 

elements from the model after they attain the limit strain. 

Additionally, the material property variability was account for. Validations of this 

DEM version and more details about its implementation were presented by Kosteski et al. 

(2010; 2014; 2015). 

 

3 SIMULATION OF RATE DEPENDENCE AND SCALE EFFECT OF CONCRETE 

DISPLACEMENT CONTROLLED TENSILE TESTS 

 

3.1 DESCRIPTION OF THE NUMERICAL MODEL 

Figure 2 represent the characteristic geometry of the “dog bone” samples used in the 

simulations, while Table 1 resumes the dimensions of each specimens (configurations I to 

IV), all presenting the same thickness, t = 15 mm. It is important to notice that the specimen S 

II was obtain multiplying all the dimensions of the specimen S I for 3.5; samples S III and S 

IV were obtained similarly, and are, respectively, 5 and 7.5 times sample S I.  

 
Figure 2 Geometry of the specimen with a “dog bone” shape used in the simulations. 

Table 1 Dimensions of the concrete specimens 
 

L [mm] D [mm] L0 [mm] W [mm] W0 [mm] 

S I 45.00 87.80 194.22 15.00 22.89 

S II 157.50 307.32 679.74 52.50 80.13 

S III 225.00 439.02 971.50 75.00 114.47 

S IV 337.50 658.50 1456.65 112.50 171.68 
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For the simulations, the samples described were uploaded into the software Abaqus, 

which allows to combine the finite element method (FEM) and the lattice discrete element 

method (LDEM). Particularly, the specimens were elaborated using FEM at the extremities 

and LDEM for the central section; this is possible because the rupture is expected in the 

central region, as it suffers a reduction of the transversal section. In Figure 3, the simulated 

models are reported in details. In order to avoid connection ruptures, the junction between the 

two parts was defined through the central nodes of the outermost cubic modules. The insert b) 

in Figure 3 illustrate the junction scheme; for more details, please see Kosteski (2012). 

The samples are fixed on the inferior surface (insert c, Figure 3) and a growing strain 

is applied, uniformly distributed, on the superior surface, inducing a nominal uniform tensile 

strength (insert a, Figure 3). 

The portion of the model S I evaluated through the FEM presents 80 elements C3D8R 

(an 8-node linear brick, reduced integration, hourglass control), while the portion simulated 

with the LDEM has 2 cubic modules in length, 7 in height and 2 in thickness, summing 300 

degree of freedom. The models S II (7x22x2 LDEM elementary cubes), S III (10x31x2 

LDEM elementary cubes) and S IV (15x46x2 LDEM elementary cubes) have 1008, 2120 and 

3480 finite elements, as well as 2580, 5028 and 10908 LDEM degree of freedom, 

respectively. 

 
Figure 3 Specimens simulated with LDEM and FEM in the Abaqus environment. The inserts 

detail the boundary conditions (a and c) and the contact area between the two methods (b). 
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The property values for concrete used in the simulations are collected in Table 2. 

These data were already used by Riera et al. (2014), as the parameter validity to appropriately 

represent the material was confirmed by experimental tests. It is important to note that the 

same LDEM element size is adopted for all the simulations. This means that, when the 

dimension of the sample change, the quantity of elements of the LDEM mesh also changes, 

but its length is always the same. 

The propagation rate of the longitudinal wave in the simulated material will be: 

C𝑝𝑝 = �𝐸𝐸 𝜌𝜌⁄  = 3603.28 m/s (5) 

Riera et al. (2011) point out that, for both experiments or computational evaluations, 

traction tests with displacement control are valid only if the ratio between the displacement 

rate and the rate of propagation of the longitudinal wave in the material do not exceed the 

deformation εmin, in which the fissure starts to occur. 

Table 2 Simulation data for concrete 

Properties Concrete 

E [GPa] 29.43 

ρ [Kg/m³] 2266.7 

ν 0.25 

Gf [N/m] 130 

CV(Gf) [%] 50 

εp  2.059E-4 

L [m] 0.0075 

lcx = lcy = lcz [m] 0.03 

Dt [s] 4.47E-7 

 

With the properties used in the present LDEM simulations, this relationship is fulfilled 

when the maximum test rate is equal to εpCp = 0.742 m/s. Therefore, the maximum strain rate 

for the S I, S II, S III and S IV samples are 3.821, 1.092, 0.764 and 0.509 s-1, respectively. 

The specimens were tested under eight different strain rates (constant) equal to 0.1%, 

1%, 5%, 10%, 20%, 30%, 50% and 80% of the maximum strain rate of each sample, in order 

to verify the effects of the loading rate. The strain rates corresponding to 0.1% of the 

maximum strain (0.0038; 0.0011; 0.00076 and 0.00051s-1, respectively) were considered as 

static loading. For each specimen size and different strain rate, 4 repetitions were realized to 

validate the model. 
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3.2 SCALE EFFECT OF STATIC LOAD 

Four simulations for each specimen were made under static loading (0.1% of the 

maximum deformation rate). In Figure 4a, it is possible to see the result of the stress-strain 

curves obtained for the sample S II. Figure 4b represents the variation of the maximum stress 

in relation to the total length of specimen, L0. It is possible to observe the scale effect on the 

stress, since it can be verified that the rupture tension decreases when the size of the 

specimens increases. The rupture tension for sample S IV and S V are statistically different 

from sample S II and different among them (one-way Anova, Tukey and Fisher tests, p < 

0.05). 

The maximum stress for class C60 concretes, with 60MPa of compressive strength, 

presents a strain of about 0.2% in compressive load. In this kind of material, the ultimate 

strength in compression is usually five to ten times larger than in tension (see Kupfer and 

Gerstle, 1973). Therefore, the values obtained in these simulations well correspond with the 

experimental ones. Moreover, the size effect found in experiments on concrete specimens 

(Ferro 1994; Carpinteri and Ferro 1998; van Vliet and van Mier 2000) also agree with the 

simulations here presented. 
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Figure 4 a) Stress versus strain curves for specimen S II with static loading, and b) Variation 

of maximum stress for different sizes of specimens. 

 

3.3 STRAIN RATE EFFECT 

Figure 5 shows the stress-strain response of one simulation performed for each 

specimen size under the different strain rates applied. The strain is calculated on the central 

part of the specimen and the reaction was measured in the lower part of the sample, at which 

the displacement was restricted. The values in the legend represent the percentage of the 
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deformation rate applied in relation to the calculated maximum. In this figure, it can be clearly 

seen that, as the loading rate increases, the maximum tension increases. 

It is important to note that the strains are calculated from the imposed displacement on 

the upper surface of specimen (inset a in Figure 3) and the stress through the reaction forces 

measured on the inferior surfaces (inset c in Figure 3). For this reason, a delay might appear in 

the strain-stress curves at elevated strain rates. In these cases, the specimen starts to deform, 

but the tensile wave takes some time to reach the opposite surface were the reactions are 

measured. This phenomenon is clearly observed in Figure 5. 
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Figure 5 Stress versus strain curves for each specimen under the different strain rates 

employed. 

 

Table 3 presents the mean maximum stress of the four simulations performed for each 

loading velocity and size of the sample. This table also summarizes the coefficient of 

variation (CV) found for each case. The strain rates are given in relation to the maximum rate 

that can be applied to each specimen size, as stated before. 
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Table 3 Maximum stress and coefficient of variation. 

Percent of ε& 

maximum  

[%] 

CP I CP II CP III CP IV 

σmax,average 

[MPa] 

CV 
[%] 

σmax,average 

 [MPa] 

CV 
[%] 

σmax,average 

 [MPa] 

CV 
[%] 

σmax,average 

 [MPa] 

CV 

[%] 

0,1 5,86 13,19 6,34 4,06 5,67 3,93 5,32 11,60 

1 5,86 13,17 6,35 4,32 5,69 3,84 5,36 11,41 

5 6,25 15,02 6,52 3,88 5,84 2,84 5,62 8,20 

10 6,53 13,83 6,78 5,52 6,12 1,15 5,79 8,81 

20 7,18 9,37 7,43 3,61 7,07 4,29 7,04 4,47 

30 6,94 14,30 7,17 7,41 6,99 2,81 6,83 5,71 

50 10,1 1,12 10,1 0,46 10,7 0,23 10,6 1,42 

80 13,1 9,36 13,1 4,90 13,3 3,74 13,1 4,97 

 

In order to graphically analyze the effect of the strain rate, the dynamic increase factor 

(DIF) is normally used; the DIF represents the ratio between the dynamic and the static 

strength. Figure 6 shows the DIF values versus strain rate curve for the four simulated test 

specimens. Figure 6a reports these curves for the 4 specimens simulated, where each point is 

one replicate. For the same CP size, the variation of the results between repetitions can be 

observed. It was verified that, for the deformation rate of where the change of inclination 

occurs, the instability of the values is higher.  
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Figure 6 a) Simulation of the effect of the deformation rate on the traction for concrete; b) 

Scaled adjustment of the previous curves by multiplying the strain rate by the scale factor. 

 

A scale effect generated by different loading rates is observed in Figure 6a. It is 

important to point out that the effect of structural scale is being eliminated, because the 

dynamic stress is divided by the static stress obtained for the same analyzed body. Thus, the 
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static tension considered to obtain the Dynamic Intensification Factor is that of the specimen 

under analysis and not the reference specimen. 

This way of presenting the results is widely used in the literature, where the ordinate is 

normalized but its abscissa is not. To solve this question and produce a totally normalized 

graphic, the strain rate were related to the minor specimen SI. The differences in the curves of 

Figure 6a occur due to the different specimen sizes, presenting a scaling factors in relation to 

S I of 1.5 (S II), 3.5 (S III) and 5.0 (S IV). Multiplying these scaling factors by the strain rates 

of the corresponding specimens at each point, it is possible to generate the curve shown in 

Figure 6b. Clearly, it can be seen that the difference in the curves was minimized using the 

ratio of the sample size. This adjustment eliminates the two types of scale effects generated in 

the model. 

Normally, the data in the literature use a rate of static deformation much smaller than 

the one used in this work. Therefore, one more simulation was performed for each sample 

with a deformation rate of 10-4s-1 to verify if there was variation of the rupture strength in 

relation to the one performed with the previous deformation rate, which was considered the 

static test. No resistance variation was found.  

 

4 EVALUATION OF RESULTS AND COMPARISON WITH LITERATURE DATA 

To better analyze the influence of the geometry and dimensions of the specimens, the 

data presented by Malvar and Crawford (1998) were studied. These authors presented a data 

collection that sustains that in concrete the dynamic increase factor (DIF), i.e. the ratio of the 

dynamic to static strength, is a bilinear function of the deformation rate (in a graph log-log),: 

the DIF increases for strain rates below 10-6s-1, and presents a slope change at a strain rate of 

1s-1. Figure 7a is a representation of the results presented by these authors, but only reporting 

the data for which the dimensions of the specimens were described. In this paper, Melliger 

and Birkimer obtained the results using concrete cylinders of 260mm in length and 50.8 in 

diameter, while Birkimer used cylinders of 890mm in length and 50.8 in diameter. Ross tested 

several cylindrical specimens of concrete using the Slip-Hopkinson Pressure Bar (SHPB) in 

direct tension, with specimen diameters of 50.8 and 76.2 mm. It also made tests using the 

Brazilian test (split tension) varying the diameter from 19 to 51 mm, and length from 45 to 51 

mm. John, Antoun and Rajendran also used SHPB with specimens of 12.7, 25.4 and 50.8 mm 

in diameter and 6.4 and 12.7 mm in thickness. 

As the characteristics of the concretes in the work were not reported, it is assumed 

that, in general, the maximum diameters of the aggregate do not differ too much, always 
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being much smaller than the diameter of the sample cylinder. By the forms of the ruptures, it 

is also considered that the characteristic dimension of the sample will be its diameter. In Table 

4, the variation of the characteristic size of the specimen is reported for each author of the test. 

The last column of Table 4 present the scaled factor calculated as the ratio between the 

diameter of the specimens and the minimum diameter related in the experiments. 

 

Table 4 Sizes of specimens. 

Author Diameter [mm] Length [mm] Factor 

John et al. 12,7 - 25,5 - 50,8 6,4 - 12,7 1 – 2 

Ross, Split tension 19 - 50,8 45 - 51 1.49 – 4 

Mellinger, Birkimer 50,8 260 4 

Birkimer 50,8 890 4 

Ross, SHPB 50,8 - 76,2  4 – 6 

 

Analyzing Figure 7a, it can be observed that the data of John et al. are offset to the 

right in respect to the data cloud. These data were found to have the smaller cylinder 

diameters. The results of Ross Split tension are more central in the data cloud. Finally, the 

data of Mellinger and Birkimer are lagged to the left of the data cloud, these being the largest 

samples. 

The change between the sizes of the cylinders analyzed by the different authors is not 

very significant, although apparently, there is a displacement of the data according to the 

characteristic size of the specimen. 
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Figure 7 Analysis of literature data, a) original from Malvar and Crawford (1998), b) scaled 

values. 
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Figure 7b reports the same data presented in Figure 7a, but with the deformation rates 

multiplied by the scaling factors, i.e. normalizing the strain rate in respect to the minimum 

characteristic size used by John et al. (12.7mm). As the works of John et al. and Ross used 

more than one specimen diameter, and it was not possible to distinguish which results 

belonged to which diameter value, the factors highlighted in the last column of Table 4 were 

adopted. 

As observed for the simulations presented before, if the size effect is taken into 

consideration, also the dispersion of DIF vs strain rate curve reported in the literature is 

reduced. Once more, the scaling factor reduces the differences found in the DIF curve, 

decreasing the effects related to the different specimen dimensions. Although other 

characteristics of concrete, as its strength, granulometry of its compounds, maximum 

aggregate size, cement type and humidity, among others, can change the DIF ratio with the 

rate of deformation applied, we demonstrated here that also the size of the sample has a very 

important impact on the results. 

 

5 CONCLUSIONS 

In this work we presented a mixed model that uses FEM and LDEM to simulate the 

variation effects of the mechanical responses with the deformation rate and with the size of 

the specimens studied. From the analyses, the following conclusions are presented: 

- It was possible to observe two different scale effects: the first can be observed without 

increasing the deformation rate, while the other can be perceived with the application of 

different deformation rates.  

- The increase in tensile strength was observed without any change in the material constitutive 

equations or parameters. Thus, the proposed method of the combined use of LDEM and 

FEM can capture strain rate dependence.  

- If it is taken into account the scaling factor, the response of the DIF vs strain rate curve is 

better defined. If this effect would be considered in experimental analysis (as verify with 

the data reported in literature), the resulting DIF distribution could be narrower.  

As widely quoted and studied, there are other effects that also alter the response to the 

variation of the deformation rate. Among other, we can mention granulometry and internal 

composition of the material, humidity, the characteristic strength and the concrete size. These 

factors must be taken into account in order to compare the actual effect of the deformation 

rate with the size of the analyzed specimen. 
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