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ABSTRACT

This paper presents a study on the variation of strain rate influence with the scale
effect in quasi-brittle materials. Works in the literature report an increase of dynamic
resistance with strain rate. To study this relation, a numerical model that combines the Finite
Element Method and the Lattice Discrete Element Method is employed. This mixed model
was implemented on the commercial software Abaqus/Explicit. The samples are prepared
with FEM at the extremity and LDEM for the central part, which has a reduction in the cross-
section, so the rupture occurs in the middle. In the simulations, four model specimens with
dimensional variations were subjected to direct tensile testing with different strain rates. The
results showed that with the increase of applied strain rate, the resistances also increase and
the body dimension influences this behavior. The variation of the tensile strength is found
without modifications on the elemental constitutive relationship or material parameters. At
last, a method that could lead to an independent relationship between the dynamic
intensification and the stain rate of scale effect is also proposed.
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1. INTRODUCTION

Concrete structures with special applications, such as nuclear reactor contention,
protection shelters and protection plates against explosions, among others, can suffer loading
with high tension or strain rates, varying from 10 s™ to 1000 s™. Vehicle collisions, explosion
impacts and earthquakes can also generate high tension or strain rates, at which the material
apparent resistance can significantly increase.

Malvar and Crawford (1998) presented a data collection to sustain that in concrete, the
dynamic increase factor (DIF), i.e. the ratio of the dynamic to static strength, is a bilinear
function of the strain rate (in a log-log plot): below 10e® s™! there is no increase in the strain
rate, while the slope changes when the rate reaches 1 s™'.

Several works evaluate the effect of the strain rate in concrete with different tests and
different specimen sizes. Among others, Brara et al. (2001) performed tests experimentally in
wet concrete based on the Hopkinson compression bar; Wu et al. (2005) performed
experimental tests and numerical simulations with the finite element method and Weerheijm
and Van Doormaal (2007) also measured the tensile failure of concrete at high loading rates
with an alternative split Hopkinson bar test methodology. Lu et al. (2014) submitted recycled
aggregate concrete specimens to compressive loading based on split Hopkinson pressure bar
tests, finding that impact properties of recycled aggregate concrete exhibit strong strain-rate
dependency, that increases approximately linearly with strain-rate. Moreover, Ibrahim et al.
(2016) investigated the stress-strain characteristics of hybrid fiber reinforced concrete
composites under dynamic compression using the Split Hopkinson Pressure Bar getting that
degree of fragmentation of composite specimens increases with increase in the strain rate.

Lu and Li (2011) reported that, at high strain rates, the triaxiality effect on the increase
of the dynamic tensile strength in concrete is negligible. According to them, the increase in
tensile strength is associated with the intrinsic properties of the material, instead of “structural
effects”; for this reason, the effect can be mostly assigned to micro fissure inertia.

An important aspect evaluated by Riera et al. (2011), for both physical or numerically
simulated displacement controlled tensile tests, is that it can only be considered conclusive the
results where the ratio between the displacement rate and the propagation rate of the
longitudinal wave Cp does not exceed the strain emin, at which the damage starts to form in the
material. Moreover, the minimal strain has to be higher than the critical deformation failure

(ep), at which the damage occurs. The study concludes that a strain rate threshold that varies
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with the material properties and the specimen size has to be considered to validate the
simulations.

Another aspect to be considered is that the tests in the engineering practice operate on
models and specimens extremely reduced in comparison with the real structures. These tests
are essential to evaluate structure or composition material behaviors, and for this reason, it is
essential to consider the scale effect in order to transfer the experimental results to the real
structure scale.

The size effect is a phenomenon characterized by structural behavior changes when
dimensional variations occur. This phenomenon can alter the main parameters that govern the
mechanical solid behavior, such as stress, strain and fatigue material resistance, being that
these parameters decrease when the structure size increases.

On the topic of size effect of quasi-brittle materials, several contributions can be found
in the literature; among others, it is important to highlight the works of Carpinteri and
coworkers. Carpinteri presented his basic ideas in his book (Carpinteri, 1986), and few years
later, in Carpinteri and Chiaia (1997), he introduced the multifractal law. This theory was
applied in different contests, for example in Carpinteri et al. (2003), and it will be used in one
of the applications carried out in this work. Another classical approach to understand the size
effect was proposed by Bazant and Chen (1997). An interesting discussion about the two
theories could be followed in Bazant and Yavari (2005) and in Carpinteri et al. (2007).

Different methods are available in the literature to study these effects. There are
several aspects to be considered in applying a classical approach, as finite element method
(FEM) and boundary element method (BEM), to solve a problem where a fracture could
appear. For this reason, a combination between these methods and the cohesive interface
technique (Xu and Needleman, 1994), or the extended finite element formulation (Moes and
Belytschko, 2002) should be applied to bypass the hypothesis of a continuum medium used in
the classical methods. Cotsovos and Pavlovic” (2008), Ozbolt et al. (2014) and Guo et al.
(2017), among others, use the Finite Element Method to model concrete tensile failure under
high loading rates.

On the other hand, the discrete element approach is another way to solve the problem,
as it is more natural to deal with fracture and fragmentation. The works of Li and Liu (2002),
Liu and Liu (2007) and Silling and Lehoucq (2010) relate with this approach.

Lattice Models, of which the formulation used in the present work is a special case,
belong to this Discrete Element Method group. Basically, the solid is modeled by means of an

array of uniaxial elements, which interconnect nodal masses with two or three degrees of
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freedom. The stiffness of these elements can be determined from the mechanical properties of
the anisotropic solid to be represented. Schlangen and van Mier (1995), Rinaldi and Lai
(2007), Rinaldi (2009; 2011) and Mastilovic (2011) employ different versions of the Lattice
approach, while Hwang et al. (2016, 2017) and Cusatis (2011) also use Lattice Models to
simulate concrete tensile failure under high loading rates.

The method used in the current work was proposed originally by Riera (1984). In this
formulation, the lattice has a regular or quasi-regular arrangement, and no rotations are
considered within the connections. In the lattice discrete element method (LDEM) the masses
are concentrated in the nodes, interconnected by one-dimensional elements with constitutive
relation, based on the bilinear law proposed by Hillerbog (1978), which allows to model the
fracture and the anisotropic damage with relative facility.

Riera et al. (2011) employed LDEM to carry out simulations at high strain rates for
concrete. An increase in tensile strength was observed without any changes in the constituent
equations or material parameters. Simulations on the size effect can be found in several
applications, as in Miguel et al. (2010) and Iturrioz et al. (2009) for concrete beam; Riera et
al. (2014) for rocks dowels; Kosteski et al. (2011) for the analysis of crack propagation in
solids.

With the aim to develop a flexible modeling tool, LDEM is implemented using
Abaqus/Explicit (Dassault Systemes, Simulia, 2013). This allows to combine the LDEM with
the capabilities of Abaqus for contact and eigenvalue analyses, and for the inclusion of rigid
parts into the model assembly. The validation of this implementation is found in Kosteski et
al. (2010); this approach was used to simulate reinforced concrete plates subjected to impact
in Kosteski et al. (2014) and to model the falling-weight impact test of PMMA specimens in
Kosteski et al. (2015).

In this work, a combination of the lattice discrete element method (LDEM) with the
finite element method (FEM) will be used to perform direct tensile tests for different size
specimens and strain rates; the results will be evaluated and compared with the results present

in the literature.

2. THE LATTICE DISCRETE ELEMENT METHOD IN FRACTURE PROBLEM

The lattice discrete element method (LDEM), suggested by Riera (1984), consists in
representing the continuum through a spatial arrangement of bars, whose mass is concentrated
at the truss nodes. The basic cubic module, as shown in Figure 1, is composed by 20 bar

elements and 9 interconnected nodes. Each node presents three degrees of freedom
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corresponding to the three components of the displacement vector in a global reference

system.

Damage energy,
(”(.’mg

Elastic strain
energy, U/,

Figure 1 (a) Basic DEM cubic module. (b) Hillerborg’s constitutive law adopted for concrete.

The discrete element representation of the orthotropic continuum was adopted to solve
structural dynamic problems by means of explicit and direct numerical integration of the
equations of motion, assuming the mass lumped at the nodes. The equivalence between an
orthotropic elastic solid, with principal orthotropic axes oriented in the direction of the
longitudinal elements, and the cubic array model was demonstrated by Nayfeh and Hefzy
(1978), within the framework of linear elasticity.

For the basic geometric arrangement used in this version of LDEM, the length of
longitudinal and diagonal elements are L,, and L; = \/TH/Z , respectively. The equations that
relate the equivalent bar stiffness and properties of an isotropic elastic solid are presented as

follows:

EA, = E}I2, EAg = 228 (1)

Where Young’s module is denoted by £, L is the length of longitudinal elements, § =

9v 9+86
d¢ =
(4-8v) 18+248

diagonal elements with the linearly elastic solid properties. Poisson’s coefficient v appears in

are coefficients that relate the parameters defined for longitudinal and

the definition of factor . The LDEM model used herein is completely equivalent to an
isotropic elastic solid when v = 0.25. For other values of Poisson’s ratio, small differences can
appear, as discussed by Jikov and Yates (2012). The relations between the properties of
elastic solids and LDEM element stiffness are further examined by Kosteski et al. (2012).
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It is worth noting that, since nodal coordinates are updated at every time step, large
displacements are naturally accounted for. At the same time, the LDEM has a natural ability
to model cracks. They can be introduced into the models as pre-existent features or as the
irreversible effect of crack nucleation and propagation. Crack nucleation and propagation
requires non-linear constitutive models for material damage, in order to allow the elements to
break when they attain a critical condition.

Each bar element submitted to traction in this model follows the bilinear softening law
proposed by Hillerborg (1978), adopted for the representation of concrete material (Figure 1
b). In the case of compressive loads, the material behaves as linear elastic. Thus, the failure in
compression is induced by indirect traction.

The area under the curve is equivalent to the energy density that is necessary to break
the element. From linear fracture mechanics, the relationship between the energy density and

the properties of the model in LDEM can be expressed as (2).

[ F(e)de = 24 @

Ly

In the first term of this expression, F' is the force and ¢ is the strain of an element. In
the second term, Gy is the specific fracture energy, a material property, L is the module edge
length and 4/ is the equivalent fracture area defined in order to satisfy the condition that the
energy dissipated through the continuum fracture and by the discrete representation are
equivalent.

The angular coefficient of the elastic part represents the equivalent elastic modulus,
that is the product between cross-section area and the Young modulus E4;. A basic parameter

of the bilinear constitutive relationship is given by:

_ fo
gp - Edeq (3)

In equation (2), & represents the strain peak, where Gy is the material toughness and

deq the characteristic length, which is considered a material property. The strain ¢ is related to

the ultimate load of the element and is defined by
Ao
& = Epleq (A_l) (L_l) 4
It should be noted that & depends on the material properties and also on the

discretization level. Figure 1b shows the bilinear relationship where the strains ¢, and & are

indicated.
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It is important to point out that the specific fracture energy Gy is proportional to the
area below the bilinear elemental constitutive law. Hence, when the damage energy density
equals the fracture energy, the element fails and loses its load carrying capacity.

The intrinsic inhomogeneities of materials are represent by random fields introduced
by variations in the properties E, p e Gy, based on three-dimensional stochastic fields proposed
by Shinozuka and Deodatis (1991). The distribution of the random field and its correlation
length can also be fit. An explanation of how this can be performed is found, among other, in
Miguel et al. (2008), Puglia et al. (2010) or Kosteski et al. (2012).

In this work, it is admitted that Gy is a 3D random field, herein assumed to have a
Weibull probability distribution with defined mean, coefficient of variation and correlation
length. This postulation is very important because the random field is independent of the
LDEM mesh. For this reason, the simulation results do not change when the LDEM mesh is
modified and the modeled random field remains constant (Kosteski et al. 2012, Birck et al.
2018).

The model space is encircled by a regular prism. This prism is subdivided in equal
minor prism of equal size to the correlation lengths (/cx, Icy, lcz) of the random field. Every
vertex of these prisms, herein called poles, is associate to a statistical independent random
value of the Gy field, with a Weibull probability distribution function with desired mean and
coefficient of variation. In this way, the special random field of toughness Gris defined.

Then, the prismatic domain of the random field and the LDEM mesh domain are
superimposed. To each LDEM element is assigned a property, Gy in this work, linearly
interpolated from its eight nearest poles, considering the barycenter of each LDEM element as
weights for this calculus. In this way, if the mesh changes, the interpolated values will be kept
consistent in the same regions. This process of tridimensional interpolation was first
employed in LDEM applications by Miguel et al. (2008).

All the explanation related to this method can be found, between others, in Kosteski et
al. (2009, 2011, 2012, 2014, 2015), Iturrioz et al. (2009), Miguel et al. (2010) or Riera et al.
(2011, 2014).

2.1 LDEM in Abaqus-Explicit

In order to analyze structures with complex geometry or non-standard boundary
conditions, the Lattice Discrete Element Method (LDEM) was introduced in the
ABAQUS/Explicit (Dassault Systemes, 2013) system. The LDEM is implemented using 2-

node linear-displacement truss elements (T3D2) for the model discretization.

Revista Sul-Americana de Engenharia Estrutural, Passo Fundo, V. 17 n. 1, p. 40-59, jan./abr. 2020
46



The non-linear constitutive law is implemented through the smeared model due to
Hillerborg (1978) by means of the *BRITTLE CRACKING, *BRITTLE SHEAR and
*BRITTLE FAILURE keywords. *BRITTLE CRACKING is set to TYPE=STRAIN to
specify the critical failure strain (point A in Figure 1b) and the limit strain (point B in Figure
1b); *BRITTLE SHEAR is specified to complete the model data only, as Mode-II shear
stresses are not induced in bar elements; *BRITTLE FAILURE is used to remove the failed
elements from the model after they attain the limit strain.

Additionally, the material property variability was account for. Validations of this
DEM version and more details about its implementation were presented by Kosteski et al.

(2010; 2014; 2015).

3 SIMULATION OF RATE DEPENDENCE AND SCALE EFFECT OF CONCRETE
DISPLACEMENT CONTROLLED TENSILE TESTS

3.1 DESCRIPTION OF THE NUMERICAL MODEL

Figure 2 represent the characteristic geometry of the “dog bone” samples used in the
simulations, while Table 1 resumes the dimensions of each specimens (configurations I to
IV), all presenting the same thickness, t = 15 mm. It is important to notice that the specimen S
IT was obtain multiplying all the dimensions of the specimen S I for 3.5; samples S III and S

IV were obtained similarly, and are, respectively, 5 and 7.5 times sample S I.

ES '_‘-:—:-.___:'__ e
wWo WI
= L— — -
D t
LO

Figure 2 Geometry of the specimen with a “dog bone” shape used in the simulations.
Table 1 Dimensions of the concrete specimens

L [mm] D [mm)] LO[mm] W [mm] W0 [mm]

S1 45.00 87.80 194.22 15.00 22.89
S1I 157.50 307.32 679.74 52.50 80.13
S III 225.00 439.02 971.50 75.00 114.47
SIV 337.50 658.50 1456.65 112.50 171.68
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For the simulations, the samples described were uploaded into the software Abaqus,
which allows to combine the finite element method (FEM) and the lattice discrete element
method (LDEM). Particularly, the specimens were elaborated using FEM at the extremities
and LDEM for the central section; this is possible because the rupture is expected in the
central region, as it suffers a reduction of the transversal section. In Figure 3, the simulated
models are reported in details. In order to avoid connection ruptures, the junction between the
two parts was defined through the central nodes of the outermost cubic modules. The insert b)
in Figure 3 illustrate the junction scheme; for more details, please see Kosteski (2012).

The samples are fixed on the inferior surface (insert c, Figure 3) and a growing strain
is applied, uniformly distributed, on the superior surface, inducing a nominal uniform tensile
strength (insert a, Figure 3).

The portion of the model S I evaluated through the FEM presents 80 elements C3D8R
(an 8-node linear brick, reduced integration, hourglass control), while the portion simulated
with the LDEM has 2 cubic modules in length, 7 in height and 2 in thickness, summing 300
degree of freedom. The models S II (7x22x2 LDEM elementary cubes), S III (10x31x2
LDEM elementary cubes) and S IV (15x46x2 LDEM elementary cubes) have 1008, 2120 and
3480 finite elements, as well as 2580, 5028 and 10908 LDEM degree of freedom,

respectively.

b)

1456.65 mm

971.5 mm
<

679.74 mm

SI S ST SIV
Figure 3 Specimens simulated with LDEM and FEM in the Abaqus environment. The inserts

«
*l 194.21 mm
>

detail the boundary conditions (a and c) and the contact area between the two methods (b).
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The property values for concrete used in the simulations are collected in Table 2.
These data were already used by Riera et al. (2014), as the parameter validity to appropriately
represent the material was confirmed by experimental tests. It is important to note that the
same LDEM element size is adopted for all the simulations. This means that, when the
dimension of the sample change, the quantity of elements of the LDEM mesh also changes,
but its length is always the same.

The propagation rate of the longitudinal wave in the simulated material will be:

C, =+E/p=3603.28m/s (5)

Riera et al. (2011) point out that, for both experiments or computational evaluations,
traction tests with displacement control are valid only if the ratio between the displacement
rate and the rate of propagation of the longitudinal wave in the material do not exceed the
deformation &min, in which the fissure starts to occur.

Table 2 Simulation data for concrete

Properties Concrete

E [GPa] 29.43
o [Kg/m?] 2266.7
1% 0.25
Gy[N/m] 130
CV(Gy) [%] 50
& 2.059E-4
L [m] 0.0075
lex = ley = lez [m] 0.03
Dt [s] 4.47E-7

With the properties used in the present LDEM simulations, this relationship is fulfilled
when the maximum test rate is equal to ,Cp = 0.742 m/s. Therefore, the maximum strain rate
for the ST, SII, S IIT and S IV samples are 3.821, 1.092, 0.764 and 0.509 s™!, respectively.

The specimens were tested under eight different strain rates (constant) equal to 0.1%,
1%, 5%, 10%, 20%, 30%, 50% and 80% of the maximum strain rate of each sample, in order
to verify the effects of the loading rate. The strain rates corresponding to 0.1% of the
maximum strain (0.0038; 0.0011; 0.00076 and 0.00051s™!, respectively) were considered as
static loading. For each specimen size and different strain rate, 4 repetitions were realized to

validate the model.
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3.2 SCALE EFFECT OF STATIC LOAD

Four simulations for each specimen were made under static loading (0.1% of the
maximum deformation rate). In Figure 4a, it is possible to see the result of the stress-strain
curves obtained for the sample S II. Figure 4b represents the variation of the maximum stress
in relation to the total length of specimen, LO. It is possible to observe the scale effect on the
stress, since it can be verified that the rupture tension decreases when the size of the
specimens increases. The rupture tension for sample S IV and S V are statistically different
from sample S II and different among them (one-way Anova, Tukey and Fisher tests, p <
0.05).

The maximum stress for class C60 concretes, with 60MPa of compressive strength,
presents a strain of about 0.2% in compressive load. In this kind of material, the ultimate
strength in compression is usually five to ten times larger than in tension (see Kupfer and
Gerstle, 1973). Therefore, the values obtained in these simulations well correspond with the
experimental ones. Moreover, the size effect found in experiments on concrete specimens
(Ferro 1994; Carpinteri and Ferro 1998; van Vliet and van Mier 2000) also agree with the

simulations here presented.
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Figure 4 a) Stress versus strain curves for specimen S II with static loading, and b) Variation

of maximum stress for different sizes of specimens.

3.3 STRAIN RATE EFFECT

Figure 5 shows the stress-strain response of one simulation performed for each
specimen size under the different strain rates applied. The strain is calculated on the central
part of the specimen and the reaction was measured in the lower part of the sample, at which

the displacement was restricted. The values in the legend represent the percentage of the
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deformation rate applied in relation to the calculated maximum. In this figure, it can be clearly
seen that, as the loading rate increases, the maximum tension increases.

It is important to note that the strains are calculated from the imposed displacement on
the upper surface of specimen (inset a in Figure 3) and the stress through the reaction forces
measured on the inferior surfaces (inset ¢ in Figure 3). For this reason, a delay might appear in
the strain-stress curves at elevated strain rates. In these cases, the specimen starts to deform,
but the tensile wave takes some time to reach the opposite surface were the reactions are

measured. This phenomenon is clearly observed in Figure 5.
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Figure 5 Stress versus strain curves for each specimen under the different strain rates

employed.

Table 3 presents the mean maximum stress of the four simulations performed for each
loading velocity and size of the sample. This table also summarizes the coefficient of
variation (CV) found for each case. The strain rates are given in relation to the maximum rate

that can be applied to each specimen size, as stated before.
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Table 3 Maximum stress and coefficient of variation.

Percent of & CPI CPII CP III CP1IV

maximum | Gmaxaverage | CV | Omaxaverage | CV | Omaxaverage | CV | Gmaxaverage | CV
[%o] [MPa] [%] [MPa] | [%] [MPa] [%6] [MPa] [%o]
0,1 5,86 13,19 6,34 4,06 5,67 3,93 5,32 11,60

1 5,86 13,17 6,35 4,32 5,69 3,84 5,36 11,41

5 6,25 15,02 6,52 3,88 5,84 2,84 5,62 8,20

10 6,53 13,83 6,78 5,52 6,12 1,15 5,79 8,81

20 7,18 9,37 7,43 3,61 7,07 4,29 7,04 4,47

30 6,94 14,30 7,17 7,41 6,99 2,81 6,83 5,71

50 10,1 1,12 10,1 0,46 10,7 0,23 10,6 1,42

80 13,1 9,36 13,1 4,90 13,3 3,74 13,1 4,97

In order to graphically analyze the effect of the strain rate, the dynamic increase factor
(DIF) is normally used; the DIF represents the ratio between the dynamic and the static
strength. Figure 6 shows the DIF values versus strain rate curve for the four simulated test
specimens. Figure 6a reports these curves for the 4 specimens simulated, where each point is
one replicate. For the same CP size, the variation of the results between repetitions can be
observed. It was verified that, for the deformation rate of where the change of inclination

occurs, the instability of the values is higher.
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Figure 6 a) Simulation of the effect of the deformation rate on the traction for concrete; b)

Scaled adjustment of the previous curves by multiplying the strain rate by the scale factor.

A scale effect generated by different loading rates is observed in Figure 6a. It is
important to point out that the effect of structural scale is being eliminated, because the

dynamic stress is divided by the static stress obtained for the same analyzed body. Thus, the
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static tension considered to obtain the Dynamic Intensification Factor is that of the specimen
under analysis and not the reference specimen.

This way of presenting the results is widely used in the literature, where the ordinate is
normalized but its abscissa is not. To solve this question and produce a totally normalized
graphic, the strain rate were related to the minor specimen SI. The differences in the curves of
Figure 6a occur due to the different specimen sizes, presenting a scaling factors in relation to
STof 1.5 (S1I), 3.5 (S III) and 5.0 (S IV). Multiplying these scaling factors by the strain rates
of the corresponding specimens at each point, it is possible to generate the curve shown in
Figure 6b. Clearly, it can be seen that the difference in the curves was minimized using the
ratio of the sample size. This adjustment eliminates the two types of scale effects generated in
the model.

Normally, the data in the literature use a rate of static deformation much smaller than
the one used in this work. Therefore, one more simulation was performed for each sample
with a deformation rate of 10*s! to verify if there was variation of the rupture strength in
relation to the one performed with the previous deformation rate, which was considered the

static test. No resistance variation was found.

4 EVALUATION OF RESULTS AND COMPARISON WITH LITERATURE DATA

To better analyze the influence of the geometry and dimensions of the specimens, the
data presented by Malvar and Crawford (1998) were studied. These authors presented a data
collection that sustains that in concrete the dynamic increase factor (DIF), i.e. the ratio of the
dynamic to static strength, is a bilinear function of the deformation rate (in a graph log-log),:
the DIF increases for strain rates below 10!, and presents a slope change at a strain rate of
1s"l. Figure 7a is a representation of the results presented by these authors, but only reporting
the data for which the dimensions of the specimens were described. In this paper, Melliger
and Birkimer obtained the results using concrete cylinders of 260mm in length and 50.8 in
diameter, while Birkimer used cylinders of 890mm in length and 50.8 in diameter. Ross tested
several cylindrical specimens of concrete using the Slip-Hopkinson Pressure Bar (SHPB) in
direct tension, with specimen diameters of 50.8 and 76.2 mm. It also made tests using the
Brazilian test (split tension) varying the diameter from 19 to 51 mm, and length from 45 to 51
mm. John, Antoun and Rajendran also used SHPB with specimens of 12.7, 25.4 and 50.8 mm
in diameter and 6.4 and 12.7 mm in thickness.

As the characteristics of the concretes in the work were not reported, it is assumed

that, in general, the maximum diameters of the aggregate do not differ too much, always
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being much smaller than the diameter of the sample cylinder. By the forms of the ruptures, it
is also considered that the characteristic dimension of the sample will be its diameter. In Table
4, the variation of the characteristic size of the specimen is reported for each author of the test.
The last column of Table 4 present the scaled factor calculated as the ratio between the

diameter of the specimens and the minimum diameter related in the experiments.

Table 4 Sizes of specimens.

Author Diameter [mm] Length [mm] Factor
John et al. 12,7 -25,5-50,8 6,4-12,7 1-2
Ross, Split tension 19 - 50,8 45 - 51 1.49 -4
Mellinger, Birkimer 50,8 260 4
Birkimer 50,8 890 4
Ross, SHPB 50,8 - 76,2 4-6

Analyzing Figure 7a, it can be observed that the data of John et al. are offset to the
right in respect to the data cloud. These data were found to have the smaller cylinder
diameters. The results of Ross Split tension are more central in the data cloud. Finally, the
data of Mellinger and Birkimer are lagged to the left of the data cloud, these being the largest
samples.

The change between the sizes of the cylinders analyzed by the different authors is not
very significant, although apparently, there is a displacement of the data according to the

characteristic size of the specimen.

i 8
: + John etq/. ) . Joh |
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Figure 7 Analysis of literature data, a) original from Malvar and Crawford (1998), b) scaled

values.
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Figure 7b reports the same data presented in Figure 7a, but with the deformation rates
multiplied by the scaling factors, i.e. normalizing the strain rate in respect to the minimum
characteristic size used by John et al. (12.7mm). As the works of John et al. and Ross used
more than one specimen diameter, and it was not possible to distinguish which results
belonged to which diameter value, the factors highlighted in the last column of Table 4 were
adopted.

As observed for the simulations presented before, if the size effect is taken into
consideration, also the dispersion of DIF vs strain rate curve reported in the literature is
reduced. Once more, the scaling factor reduces the differences found in the DIF curve,
decreasing the effects related to the different specimen dimensions. Although other
characteristics of concrete, as its strength, granulometry of its compounds, maximum
aggregate size, cement type and humidity, among others, can change the DIF ratio with the
rate of deformation applied, we demonstrated here that also the size of the sample has a very

important impact on the results.

5 CONCLUSIONS

In this work we presented a mixed model that uses FEM and LDEM to simulate the
variation effects of the mechanical responses with the deformation rate and with the size of
the specimens studied. From the analyses, the following conclusions are presented:

- It was possible to observe two different scale effects: the first can be observed without
increasing the deformation rate, while the other can be perceived with the application of
different deformation rates.

- The increase in tensile strength was observed without any change in the material constitutive
equations or parameters. Thus, the proposed method of the combined use of LDEM and
FEM can capture strain rate dependence.

- If it is taken into account the scaling factor, the response of the DIF vs strain rate curve is
better defined. If this effect would be considered in experimental analysis (as verify with
the data reported in literature), the resulting DIF distribution could be narrower.

As widely quoted and studied, there are other effects that also alter the response to the
variation of the deformation rate. Among other, we can mention granulometry and internal
composition of the material, humidity, the characteristic strength and the concrete size. These
factors must be taken into account in order to compare the actual effect of the deformation

rate with the size of the analyzed specimen.
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