
 
 
 
 

Revista Sul-Americana de Engenharia Estrutural, Passo Fundo, v. 9, n. 2,maio/ago. 2012 

4 

                        Revista Sul-Americana de Engenharia Estrutural                               

 
 

Algoritmos eficientes para correção de erros naanálise 
dinâmica no domínio da frequência de sistemas estruturais 

 

Rodrigo Silveira Camargo1, Walnório Graça Ferreira2 

Resumo 

 Este trabalho apresenta algoritmos eficientes disponíveis na literatura para encontrar a resposta de 
sistemas estruturais submetidos a carregamentos dinâmicos, por meio de um método que usa uma 
função corretiva para encontrar a resposta transiente a partir da resposta estacionária obtida pela 
transformada discreta de Fourier (ou discrete Fourier transform, DFT). O uso da DFT, por envolver 
uma discretização, induz erros nas condições iniciais. Esse procedimento visa corrigir esses erros. 
São apresentadas duas formulações, uma em termos das respostas do sistema a deslocamento e 
velocidade iniciais unitários e a outra em termos das respostas a um trem de deslocamentos 
unitários e a um trem de variações unitárias de velocidade. Essa formulação foi generalizada para 
sistemas com múltiplos graus de liberdade com o uso de superposição modal, onde um sistema com 
N graus de liberdade é desacoplado em N sistemas com um grau de liberdade. Foram feitas 
aplicações numéricas, tanto para sistemas com um grau de liberdade, quanto para múltiplos graus de 
liberdade, envolvendo algumas cargas dinâmicas. 
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Introdução 

A resposta de um sistema estrutural (tal como uma torre ou um edifício) a um carregamento 

é dependente de vários fatores, e, principalmente, do próprio carregamento. Para carregamentos 

periódicos (cíclicos), o cálculo da transformada discreta de Fourier (ou discrete Fourier transform, 

DFT) com o uso do algoritmo da transformada rápida de Fourier (ou fast Fourier transform, FFT) 

se mostra extremamente poderoso, tanto na precisão quanto na velocidade de cálculo da resposta. 

Um carregamento periódico implicará também em uma resposta periódica (estacionária), e por isso, 

ambos podem ser facilmente analisados em termos de suas transformadas de Fourier, que expressos 

em forma discretizadapodem ser eficientemente calculadas por meio da transformada rápida de 

Fourier. 

Para o caso de um carregamento não-periódico (transiente), a resposta de um sistema será 

também não-periódica, o que faz suas análises em termos de suas transformadas de Fourier 

dificultadas. O uso do algoritmo FFT causará, por isso, uma periodização em ambas, com período 

arbitrário. Em outras palavras, isso significa que ao se usar FFT para encontrar a resposta a um 

carregamento transiente, encontrar-se-á não a resposta ao carregamento original, mas sim a uma 

versão periodizada deste. O carregamento original deverá ser truncado em algum ponto, a partir do 

qual se repetirá indefinidamente. É claro que a resposta obtida a esse carregamento induzido não é 

igual à resposta real do sistema ao carregamento original, até mesmo porque a resposta ao 

carregamento induzido será também periódica, enquanto que a resposta ao carregamento original 

será transiente. Ainda assim, ao menos dentro do intervalo de um período de truncamento, pode-se 

tornar a resposta obtida tão próxima quanto possível da resposta real, desde que tomados cuidados 

específicos. 

Em engenharia, normalmente carregamentos transientes podem ocorrer em forma 

semelhante à de pulsos, ou seja, são aplicados durante um determinado tempo e cessam daí em 

diante, período a partir do qual a estrutura está em vibração livre, e é amortecida até o repouso. 

Além disso, é usual a estrutura ter condições iniciais nulas, ou seja, deslocamento e velocidade 

nulos. Um dos modos de se minimizar os erros entre as respostas calculada e real é o de usar o que 

se chama de tempo estendido, ou seja, definir para o período de repetição induzida do carregamento 

um valor suficientemente alto para que, depois de cessada a aplicação do carregamento, a estrutura 

literalmente “tenha tempo” para ser amortecida até atingir novamente condições iniciais nulas antes 
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da ação do próximo período induzido pela periodização. O valor do tempo estendido é claramente 

dependente de fatores como a rigidez e fator de amortecimento do sistema, ou a duração da 

aplicação efetiva do carregamento, e existem diversas recomendações para possíveis valores a se 

usar. 

Entretanto, pode ser necessário um tempo estendido muito grande para assegurar o retorno 

do sistema a condições iniciais nulas até o próximo período do carregamento. A discretização do 

período dado pelo tempo estendido em um número arbitrário de pontos poderá, com isso, ser não 

muito refinada, com poucos pontos, ou ser refinada o suficiente, mas com um número muito grande 

de pontos. Além disso, muitas vezes o dado de interesse da análise é o deslocamento máximo do 

sistema, o que acontece não muito depois do fim da ação do carregamento, e freqüentemente muito 

antes de o sistema atingir o repouso novamente. Portanto, levar em consideração a resposta muito 

depois do fim da ação do carregamento pode ser um desperdício de armazenamento computacional. 

O problema, então, é discutir uma maneira eficaz de se encontrar uma aproximação 

suficientemente precisa da resposta transiente de um sistema a um carregamento, partindo-se de sua 

resposta estacionária correspondente, num período arbitrário. 

Assim, os objetivos deste trabalho são: revisar, em termos físicos, os procedimentos para 

encontrar a resposta transiente de sistemas lineares pelo procedimento clássico da DFT; examinar a 

natureza e as magnitudes dos erros que podem resultar de seu uso; apresentar umprocedimento 

eficiente, poposto por Veletsos e Ventura (1984, 1985), para calcular a resposta transiente de uma 

estrutura linear, a partir de sua resposta estacionária a uma extensão periódica do carregamento 

original, fazendo uso da superposição de uma função corretiva à resposta estacionária, efetivamente 

transformando-a na resposta transiente desejada; aplicar o procedimento proposto também nas 

soluções das equações desacopladas do movimento na formulação do método da superposição 

modal para solução de sistemas com múltiplos graus de liberdade; demonstrar a superioridade do 

procedimento apresentado com o uso de exemplos numéricos. 

Transformada de Fourier 

Definição 

A transformada de Fourier de f(t)é uma transformada integral definida por: ܨ(߱) = න ஶݐ௜ఠ௧݀ି݁(ݐ)݂
ିஶ  (1)
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A transformada que, quando aplicada aܨ(߱), é capaz de retornar novamente a função 

original f(t), é chamada transformada inversa de Fourier. Por esse motivo, a Eq. (1) é também 

chamada transformada direta de Fourier. 

A transformada inversa de Fourier é definida por: 

(ݐ)݂  = නߨ12 ௜ఠ௧݀߱ஶ݁(߱)ܨ
ିஶ  (2)

 
Se um par de funções f(t) e ܨ(߱) satisfaz as Eqs. (1) e (2), então diz-se que elas formam um 

par de transformadas de Fourier. 

Transformada discreta de Fourier (DFT) 

A definição das transformadas de Fourier, mostrada nas Eqs. (1) e (2), torna muito difícil 

seu cálculo por meios computacionais. Primeiro, porque o resultado das transformadas é uma 

função contínua, e é extremamente difícil e demorado tratar de funções contínuas analiticamente em 

computadores. Por meio de softwares, é muito mais eficiente tratar da função discretizada, ou seja, 

na forma de pontos discretos igualmente espaçados. Além disso, em casos práticos, muitas vezes a 

funçãof(t), cuja transformada está sendo calculada, pode representar o resultado de dados obtidos 

experimentalmente, e por isso também conhecida apenas em pontos discretos. 

Em segundo lugar, porque os limites de integração das transformadas tornam o número de 

pontos discretos infinito. Computacionalmente, é preciso efetuar os cálculos apenas num intervalo 

finito de pontos, ou seja, truncar as integrações. 

Essa discretização transforma as integrais das transformadas de Fourier em somatórios. Da 

mesma forma, o truncamento transforma os limites −∞e ∞em valores próprios definidos. É claro 

que esses procedimentos converterão os resultados antes exatos obtidos pelas Eqs. (1) e (2) em 

aproximações, induzindo a erros que devem ser reduzidos com a escolha apropriada do 

espaçamento entre os pontos discretos e do intervalo de truncamento. 

As Eqs. (1) e (2), quando ajustadas como explicado, são as equações da transformada 

discreta de Fourier, ou, do inglês, discrete Fourier transform(DFT), definidas por: 

 

(௠߱)ܨ = Δݐ ෍ ଶగ௜೘೙ಿேିଵି݁(௡ݐ)݂
௡ୀ଴ ,݉ = 0,… ,ܰ − 1 (3)
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(௡ݐ)݂ = Δ߱2ߨ ෍ ଶగ௜೘೙ಿேିଵ݁(௠߱)ܨ
௠ୀ଴ , ݊ = 0,… ,ܰ − 1 (4)

 

Para a aplicação das equações acima, adota-se um período ܶpara o truncamento de f(t). 
Dentro desse período, são tomados ܰ pontos discretos, igualmente espaçados porΔݐ = ܶ/ܰ. O 

valor de f(t)no n-ésimo ponto é dado por f(t୬), para o qual ݐ௡ = ݊Δݐ. 
Da mesma forma, a transformada discreta ܨ(߱) de f(t) terá como resultado ܰ pontos, 

separados pelo intervalo Δ߱ = para o qual ߱௠ ,(௠߱)ܨ O valor do m-ésimo ponto é .ܶ/ߨ2  .௠ dado pela Tabela 1ߤ ௠Δ߱, comߤ=

 

Tabela1: Frequências discretas. ݉ ߤ௠ ߱௠ 0 0 0 1 1 Δ߱ 2 2 2Δ߱ ⋮ ⋮ ⋮ ܰ 2⁄ − 1 ܰ 2⁄ − 1 (ܰ 2⁄ − 1)Δ߱ ܰ 2⁄ ܰ 2⁄ (ܰ 2⁄ )Δ߱ ܰ 2⁄ + 1 −ܰ 2⁄ + 1 (−ܰ 2⁄ + 1)Δ߱ ܰ 2⁄ + 2 −ܰ 2⁄ + 2 (−ܰ 2⁄ + 2)Δ߱⋮ ⋮ ⋮ ܰ − 2 −2 −2Δ߱ ܰ − 1 −1 −Δ߱ 
 

Essa definição “diferenciada” de ߱௠ apenas reflete a periodicidade induzida tanto para os 

pontos discretos f(t୬) quanto para os pontos discretos ܨ(߱௠). De fato, ߱௠ = ߱௠ାே, e essa 

definição de ߱௠ é necessária por adequação puramente matemática. 

Teorema da convolução 

Esta é uma propriedade importante da convolução, simbolizada por um asterisco (∗) e 

definida por: ݂(ݐ) ∗ (ݐ)݃ = න ݐ)݃(߬)݂ − ߬)݀߬ஶ
ିஶ = න ݐ)݂(߬)݃ − ߬)݀߬ஶ

ିஶ  (5)

 

O teorema da convolução relaciona a convolução diretamente com a transformada de 

Fourier. Sejam f(t) e ݃(t) duas funções quaisquer, e sejam ܨ(߱) e ܩ(߱) suas respectivas 
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transformadas de Fourier. O teorema da convolução afirma que as funções ݂(ݐ) ∗ (߱)ܨ e (ݐ)݃ (ݐ)݂ formam um par de transformadas de Fourier. Da mesma forma, as funções (߱)ܩ⋅ ⋅ (߱)ܨ e(ݐ)݃ ∗  .também formam um par de transformadas de Fourier (߱)ܩ

Denotando o operador da transformada de Fourier porℱ, o teorema da convolução pode ser 

escrito matematicamente na forma: 

 ℱሼ݂(ݐ) ∗ ሽ(ݐ)݃ = ℱሼ݂(ݐ)ሽ ⋅ ℱሼ݃(ݐ)ሽ ℱሼ݂(ݐ) ⋅ ሽ(ݐ)݃ = ℱሼ݂(ݐ)ሽ ∗ ℱሼ݃(ݐ)ሽ 
 

Se a variável ݐrepresenta tempo, f(t) e ݃(t) estarão no domínio do tempo e suas 

transformadas estarão no domínio da freqüência. Pelo teorema da convolução, o produto entre elas 

resulta numa função cuja transformada é a convolução das transformadas de f(t) e ݃(t). Em outras 

palavras, multiplicação no tempo equivale a convolução na freqüência.  Similarmente, 

multiplicação na freqüência equivale a convolução no tempo. Uma demonstração do teorema da 

convolução pode ser encontrada em Brigham (1974). 

Análise de erros 

Como afirma Calenzani (2002), os erros decorrentes da utilização da transformada discreta 

de Fourier, em vez da transformada clássica, podem não apenas estar associados somente às 

aproximações feitas quando se substitui as integrais por somatórios. Existem realmente erros que 

são inerentes ao processo de obtenção de ܰ pontos discretos da função original, ao truncamento e à 

obtenção de ܰ pontos discretos na função transformada. 

Segundo MeirovitchapudCalenzani (2002), a derivação das transformadas discretas de 

Fourier envolve três passos: discretização no domínio do tempo, truncamento no domínio do tempo 

e discretização no domínio da freqüência. Todo o processo de transformação de uma função 

contínua do tempo em uma função equivalente discretizada está mostrado na Figura 1. 

Seja, agora, uma função ݂(ݐ) qualquer e sua transformada direta ܨ(߱), de acordo com a 

Figura 1 (a). Seja Δ଴(ݐ) uma função definida como um trem de impulsos unitários separados por um 

intervalo Δݐ e Δഥ଴(߱) sua transformada direta (Figura 1 (b)). E seja, também, (ݐ)ݔ uma função 

definida como valendo 1 num intervalo de comprimento ܶ = ܰΔݐ (que engloba, portanto, ܰ 

impulsos) e 0 nos demais pontos, e sua transformada direta ܺ(߱), como a Figura 1 (d) indica. Por 

último, seja Δଵ(ݐ) uma função semelhante à função Δ଴(ݐ), porém, com impulsos de amplitude igual 
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a ଶ்గ e separados por um intervalo ܶ. Ela e sua transformada direta Δഥଵ(߱) são mostradas na Figura 1 

(f). 

A primeira parte do processo de discretização é a discretização no domínio do tempo. Faz-se 

isso multiplicando a função ݂(ݐ) pela função Δ଴(ݐ). Logo, pelo teorema da convolução, a 

transformada de Fourier da função resultante é a convolução das funções ܨ(߱) e Δഥ଴(߱). Os 

resultados das duas operações estão na Figura 1 (c). O resultado no domínio do tempo é um trem de 

impulsos com amplitude modulada pela função ݂(ݐ), e no domínio da freqüência, é a superposição 

da função ܨ(߱) repetida em intervalos iguais a Δ߱ =  Isso gera a primeira fonte de erros, o .ݐΔ/ߨ2

fenômeno de aliasing, que é a contaminação entre um período e outro no espectro de freqüências. 

A segunda parte é o truncamento, que é a multiplicação da função ݂(ݐ)Δ଴(ݐ)pela função (ݐ)ݔ. Da mesma maneira, faz-se a convolução entre as funções ܨ(߱) ∗ Δഥ଴(߱) e ܺ(߱) e o resultados 

estão na Figura 1 (e). No domínio da freqüência, ocorrem mais erros devido ao efeito rippling, que 

são as ondulações que surgem no espectro, por causa da convolução efetuada. 

A terceira parte é a discretização no domínio da freqüência. Dessa vez, é feita uma 

multiplicação no domínio da freqüência entre as funções ܨ(߱) ∗ Δഥ଴(߱) ∗ ܺ(߱) e Δഥଵ(߱). 
Conseqüentemente, é feita uma convolução entre as funções ݂(ݐ)Δ଴(ݐ)(ݐ)ݔ e Δଵ(ݐ), e o resultado 

final da discretização é mostrado na Figura 1 (g). Nessa última parte, a função no domínio do tempo 

se torna periódica e, no domínio da freqüência, ela se torna discretizada. A escolha do intervalo 

entre os impulsos da função Δഥଵ(߱) como sendo igual a 2ߨ/ܶ é proposital, e faz com que os 

impulsos da função Δଵ(ݐ) sejam espaçados em exatamente ܶ	 =  Por isso, nessa etapa, não .ݐ∆ܰ	

ocorre o efeito de aliasing no domínio do tempo. 
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Figura 1: As etapas de discretização de uma função e de sua transformada. 

 

Comparando as Figuras 1 (a) e 1 (g), vê-se que a discretização de ݂(ݐ) não difere da função 

original, a menos de uma constante, enquanto que a discretização de ܨ(߱) é ligeiramente diferente 

de ܩ(߱). Isso mostra que trabalhar com pontos discretos, em vez de com funções contínuas, induz a 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 
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erros, originados dos efeitos de aliasing e rippling. Para minimizar o efeito de aliasing, deve-se 

tomar a função Δ଴(ݐ) com impulsos unitários mais próximos, ou seja, deve-se tomar valores 

pequenos de ∆ݐ. Com isso, os impulsos da função Δഥ଴(߱) estarão mais afastados, e ocorrerá menor 

interferência entre as freqüências de um período e outro. Para minimizar o efeito rippling, deve-se 

fazer a função (ݐ)ݔ englobar o maior número de pontos possível, ou seja, deve-se tomar valores 

grandes de ܰ. Assim, a função ܺ(߱) estará mais próxima de uma função impulso unitário, e menor 

influência ela terá na convolução do processo de truncamento. A relação que existe entre as funções 

discretizadas da Figura 1 (g) é análoga à relação que existe entre as funções contínuas da Figura 1 

(a). Enquanto que as últimas se relacionam pelas transformadas de Fourier, as primeiras se 

relacionam pelas transformadas discretas de Fourier, dadas pelas Eqs. (3) e (4). 

Análise dinâmica de sistemas com um grau de liberdade 

Para sistemas com um grau de liberdade, o procedimento adotado é o de supor toda a sua 

massa ݉ concentrada em um único ponto, que pode se deslocar no mesmo sentido do grau de 

liberdade permitido pelo sistema. Como esse deslocamento acontece em uma única direção, pode-se 

expressá-lo por uma função escalar (ݐ)ݒ, que pode assumir valores positivos ou negativos, 

significando deslocamentos no mesmo sentido ou contrários a um dado referencial. A variável ݐ 
representa o tempo, e as derivadas ݒሶ(ݐ) e ݒሷ(ݐ) da resposta são, respectivamente, a velocidade e a 

aceleração do sistema. 

A rigidez é representada pela constante elástica ݇, expressa em unidade de força por unidade 

de distância. Assume-se que essa rigidez obedece à lei de Hooke, ou seja, exerce seu efeito por uma 

força de intensidade diretamente proporcional, com mesma direção e sentido oposto ao 

deslocamento do sistema. Matematicamente, temos ௌ݂ =  .(ݐ)ݒ݇−
O amortecimento do sistema é representado pela constante de amortecimentoviscosoܿ, 

expressa em unidade de força por unidade de velocidade. Este é uma aproximação do arraste com o 

meio em que o sistema está imerso (na grande maioria das vezes, o ar), juntamente com o atrito 

generalizado de suas partes internas. Assim, é expressa por uma força de intensidade diretamente 

proporcional, com mesma direção e sentido oposto à velocidade do sistema, ou seja, ஽݂ =  .(ݐ)ሶݒܿ−
A carga dinâmica que atua no sistema é expressa por uma função escalar (ݐ)݌, atuante na 

massa ݉ e na mesma direção do deslocamento a ela permitido. 
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A Figura 2 mostra um diagrama de corpo livre da massa do sistema. As forças que nela 

atuam são o carregamento (ݐ)݌, a força elástica ௌ݂(ݐ) e a força de amortecimento ஽݂(ݐ). Aplicando 

a segunda lei de Newton à massa ݉ e rearrumando, fica: 

 ෍ܨ = (ݐ)݌ (ݐ)ሷݒ݉ − (ݐ)ݒ݇ − (ݐ)ሶݒܿ = (ݐ)ሷݒ݉ (ݐ)ሷݒ݉ + (ݐ)ሶݒܿ + (ݐ)ݒ݇ = (6) (ݐ)݌

 
                            Figura 2: Modelo para sistema SDOF e diagrama de corpo livre da massa ݉. 

 

A Eq. (6) é uma equação diferencial de segunda ordem em (ݐ)ݒ que rege o deslocamento do 

sistema em função do tempo. É a equação fundamental dos sistemas de um grau de liberdade 

(1GL), e por isso é chamada equação do movimento. Sua solução (ݐ)ݒ é a resposta do sistema e é a 

incógnita a ser encontrada, por qualquer método que se queira. 

Solução da equação do movimento 

O modo clássico de se resolver a equação do movimento é com o uso da transformada de 

Fourier. Simbolizando o operador da transformada por ℱ, pode-se aplicá-la a ambos os membros da 

Eq. (6) e fazer as seguintes arrumações: ℱሼ݉ݒሷ(ݐ) + (ݐ)ሶݒܿ + ሽ(ݐ)ݒ݇ = ℱሼ(ݐ)݌ሽ݉ℱሼݒሷ(ݐ)ሽ + ܿℱሼݒሶ(ݐ)ሽ + ݇ℱሼ(ݐ)ݒሽ = ܲ( ഥ߱)− ഥ߱ଶ݉ℱሼ(ݐ)ݒሽ + i ഥ߱ܿℱሼ(ݐ)ݒሽ + ݇ℱሼ(ݐ)ݒሽ = ܲ( ഥ߱)	− ഥ߱ଶܸ݉( ഥ߱) + i ഥܸ߱ܿ( ഥ߱) + ܸ݇( ഥ߱) = ܲ( ഥ߱)	(− ഥ߱ଶ݉ + i ഥ߱ܿ + ݇)ܸ( ഥ߱) = ܲ( ഥ߱)	ܸ( ഥ߱) = 1− ഥ߱ଶ݉ + i ഥ߱ܿ + ݇ ܲ( ഥ߱)	ܸ( ഥ߱) = )ܪ ഥ߱)ܲ( ഥ߱) (7)
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Na Eq. (7), as transformadas fazem a mudança de domínio e, conseqüentemente, de variável 

independente. Foi escolhida a variável ഥ߱ (em vez de simplesmente ߱) para representar o domínio 

da freqüência, para diferenciá-la da freqüência natural do sistema߱ = ඥ݇/݉. Foi definida ainda a 

função complexa de resposta na freqüência, representada por ܪ( ഥ߱) e dada por: 

)ܪ  ഥ߱) = 1− ഥ߱ଶ݉ + i ഥ߱ܿ + ݇ (8)

 
Agora notemos que a Eq. (7) já é a resposta do sistema ao carregamento (ݐ)݌, só que 

expressa no domínio da freqüência. Para encontrar a resposta no domínio do tempo, deve-se aplicar 

a transformada inversa de Fourier, da seguinte forma: 

(ݐ)ݒ  = නߨ12 ܸ( ഥ߱)݁௜ఠഥ௧݀ ഥ߱ஶ
ିஶ  

(ݐ)ݒ = නߨ12 )ܪ ഥ߱)ܲ( ഥ߱)݁௜ఠഥ௧݀ ഥ߱ஶ
ିஶ  (9)

 

Em resumo, o procedimento para encontrar a resposta com o uso da transformada de Fourier 

é, inicialmente, encontrar a transformada de Fourier do carregamento (ݐ)݌, multiplicá-lo pela 

função complexa de resposta na freqüência ܪ( ഥ߱) e encontrar a transformada inversa de Fourier 

desse produto. 

A verdadeira vantagem no uso da transformada de Fourier para resolver a equação do 

movimento está no uso de sua forma discreta, a DFT. Com (ݐ)݌ expresso na forma de pontos 

discretos, as formas equivalentes às Eqs. (7) e (9) com o uso da DFT são, respectivamente: 

ܲ( ഥ߱௠) = Δݐ ෍ ଶగ௜೘೙ಿேିଵି݁(௡ݐ)݌
௡ୀ଴ ,݉ = 0,… ,ܰ − 1 (10)

(௡ݐ)ݒ = Δ ഥ߱2ߨ ෍ )ܪ ഥ߱௠)ܲ( ഥ߱௠)݁ଶగ௜೘೙ಿேିଵ
௠ୀ଴ , ݊ = 0,… ,ܰ − 1 (11)

Como já foi visto, uma conseqüência inerente ao processo de discretização de (ݐ)݌ e (ݐ)ݒ é 

a periodização de ambas. Por isso, deve-se escolher um período ௣ܶpara o truncamento destas, que 

será chamado tempo estendido. Naturalmente, ܰ é o número de pontos em que o tempo estendido 

será dividido,Δݐ = ௣ܶ/ܰ é o intervalo de separação entre os pontos discretos no tempo e Δ߱ /ߨ2= ௣ܶé o intervalo de separação entre os pontos discretos na freqüência. 
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Um método para correção da resposta permanente 

A escolha de um tempo estendido adequado é essencial para garantir uma boa precisão na 

resposta permanente final. Porém, dependendo dos parâmetros do sistema e da precisão que se 

busca alcançar, um valor adequado pode ser relativamente grande, e isso pode significar um esforço 

computacional muito alto, requerendo um tempo maior de cálculo. 

Além disso, o aumento do tempo estendido apenas permite um livre retorno do sistema ao 

repouso e, grande parte das vezes, o ponto de interesse que se pretende analisar está nos momentos 

iniciais da aplicação do carregamento. Nessas situações, a maior parte da resposta é calculada mas 

não é útil para análise, constituindo um esforço de cálculo “inútil”. 

Utilizar um tempo estendido menor, no entanto, fará a resposta permanente encontrada 

diferir excessivamente da resposta transiente. Veletsos e Ventura (1984, 1985) apresentam um 

método para corrigir uma resposta permanente calculada por DFT com um tempo estendido 

qualquer, e aproximá-la da resposta transiente. 

O método se baseia no fato de que, uma vez que o carregamento é o mesmo tanto para a 

resposta transiente quanto para a permanente, então a diferença entre elas deve se originar de 

diferenças entre os estados iniciais das duas respostas. Da mesma forma, se uma resposta for 

conhecida, a outra pode ser determinada pela superposição de uma resposta (em vibração livre) 

chamada corretiva, que assegura que o estado inicial da resposta permanente se conformará ao da 

transiente. 

Se chamarmos ݒ௦(ݐ)a resposta permanente obtida pela DFT então a resposta transiente ݒ௧(ݐ) 
pode ser determinada por: 

(ݐ)௧ݒ  = (ݐ)௦ݒ +  (ݐ)ߞ
 

Onde (ݐ)ߞ é a resposta corretiva que representa o efeito das condições iniciais não 

satisfeitas. 

Ainda segundo Veletsos e Ventura (1984, 1985), dois métodos podem ser utilizados para 

calcular (ݐ)ߞ. No primeiro, esta é expressa em termos das funções unitárias transientes de resposta, 

enquanto que, no segundo, esta é expressa em termos das funções unitárias permanentes de 

resposta. Essas funções serão explicadas a seguir: 
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Resposta corretiva em termos das funções transientes de resposta 

As funções unitárias de resposta são funções que representam a resposta exata de um 

sistema em vibração livre a um deslocamento inicial unitário (representada por ݃(ݐ)) e a uma 

velocidade inicial unitária (representada por ℎ(ݐ)), respectivamente. Dependendo do 

amortecimento, são determinadas pela substituição, nas expressões da solução geral analítica2, de (0)ݒ = 1 e ݒሶ(0) = 0 para encontrar ݃(ݐ) ou de (0)ݒ = 0 e ݒሶ(0) = 1 para encontrar ℎ(ݐ). 
Fazendo as substituições na expressão da solução geral para o caso mais comum de 

amortecimento, que é o subcrítico, o resultado é: (lembrando que ߱ = ඥ݇/݉ é a freqüência natural 

de vibração do sistema, ߦ = ௖ଶ௠ఠé a taxa de amortecimento do sistema e ߱஽ = ߱ඥ1 −  ଶé aߦ

freqüência natural do sistema amortecido.) ݃(ݐ) = ݁ିకఠ௧ ൤cos߱஽ݐ + ஽߱߱ߦ sen߱஽ݐ൨	
ℎ(ݐ) = ݁ିకఠ௧ ൤ 1߱஽ sen߱஽ݐ൨ 

Os gráficos de ݃(ݐ) e ℎ(ݐ) estão mostrados na Figura 3. 

 

 
 

Figura 3: Funções unitárias transientes de resposta ݃(ݐ) e ℎ(ݐ). 
 

A função corretiva seria, portanto, uma combinação linear de ݃(ݐ) e ℎ(ݐ), ou seja: 

(ݐ)ߞ  = (ݐ)݃ܽ + ܾℎ(ݐ) 
 

As constantes ܽ e ܾ devem ser determinadas a partir das condições iniciais obtidas em ݒ௦(ݐ) 
e das condições iniciais pretendidas para a resposta transiente ݒ௧(ݐ) (geralmente nulas), ou seja: 

 

 

                                                 
2  Ver, por exemplo, as eqs. (3.29), (3.23), (3.24) e (3.25) apresentadas por Camargo (2008). 
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௧(0)ݒ = ௦(0)ݒ + ሶ௧(0)ݒ								e								(0)ߞ = ሶ௦(0)ݒ +  ሶ(0)ߞ
 

Substituindo os valores de (ݐ)ߞe ߞሶ(ݐ) = ܽ ሶ݃(ݐ) + ܾℎሶ  :temos o sistema ,(ݐ)

 ൜ݒ௧(0) = ௦(0)ݒ + ܽ݃(0) + ܾℎ(0)ݒሶ௧(0) = ሶ௦(0)ݒ + ܽ ሶ݃(0) + ܾℎሶ (0) 
Cuja solução, sabendo-se que ݃(0) = ℎሶ (0) = 1 e ሶ݃ (0) = ℎ(0) = 0, é: 

 ܽ = ௧(0)ݒ − ܾ        ௦(0)        eݒ = ሶ௧(0)ݒ −  ሶ௦(0)ݒ
 

Finalmente, no caso em que as condições iniciais pretendidas para ݒ௧(ݐ) são nulas, fica: 

 ܽ = ܾ        ௦(0)        eݒ− =  ሶ௦(0)ݒ−
Resposta corretiva em termos das funções permanentes de resposta 

As funções ݃(ݐ) e ℎ(ݐ) são chamadas funções unitárias transientes de resposta porque 

descrevem a resposta transiente de um sistema a condições iniciais unitárias. De modo semelhante, 

as funções unitárias permanentes de resposta descrevem a resposta de um sistema em vibração livre 

a uma série periódica de variações unitárias de deslocamento e a uma série periódica de variações 

unitárias de velocidade. Essas funções são representadas por ݃̅(ݐ) e ℎത(ݐ), respectivamente. 

Além disso, o período entre as variações unitárias de deslocamento e velocidade é igual ao 

período utilizado no cálculo de ݒ௦(ݐ) pela DFT. É importante notar que embora ݃̅(ݐ) sofra 

variações unitárias de deslocamento, ela não necessariamente terá condição inicial de deslocamento ݃̅(0) = 1. Da mesma maneira, embora ℎത(ݐ) sofra variações unitárias de velocidade, ela não 

necessariamente terá condição inicial de velocidade ℎത(0) = 1. 

A função ݃̅(ݐ) pode ser encontrada substituindo-se, nas expressões da solução geral 

analítica, as seguintes condições iniciais: 

௖(0)ݒ  − ௖൫ݒ ௣ܶ൯ = 1        e        ݒሶ௖(0) − ሶ௖൫ݒ ௣ܶ൯ = 0 
 

Já ℎത(ݐ) pode ser encontrada da mesma maneira, porém com as seguintes condições iniciais: 

௖(0)ݒ  − ௖൫ݒ ௣ܶ൯ = 0        e        ݒሶ௖(0) − ሶ௖൫ݒ ௣ܶ൯ = 1 
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Em seguida, troca-se ݒ௖(ݐ) por ݃̅(ݐ) ou ℎത(ݐ), conforme o caso. Veletsos e Ventura (1984) 

apresentam݃̅(ݐ)eℎത(ݐ)apenas para amortecimento subcrítico. As respostas são: 

(ݐ)̅݃  = ݁ିకఠ௧Δ ቈ1 − ݁ିకఠ ೛் ቆcos߱஽ ௣ܶ − ඥ1ߦ − ଶߦ sen߱஽ ௣ܶቇ቉ cos߱஽ݐ +
+݁ିకఠ௧Δ ቈ ඥ1ߦ − ଶߦ − ݁ିకఠ ೛் ቆ ඥ1ߦ − ଶߦ cos߱஽ ௣ܶ + sen߱஽ ௣ܶቇ቉ sen߱஽ݐ 	
ℎത(ݐ) = ݁ିకఠ௧߱஽Δ ൣ൫݁ିకఠ ೛் sen߱஽ ௣ܶ൯ cos߱஽ݐ + ൫1 − ݁ିకఠ ೛் cos߱஽ ௣ܶ൯ sen߱஽ݐ൧ 

 

Para as quais: 

 Δ = 1 + ݁ିଶకఠ ೛் − 2݁ିଶకఠ ೛் cos߱஽ ௣ܶ 
 

Os gráficos de ݃̅(ݐ)eℎത(ݐ) estão mostrados na Figura 4. 

 

 
Figura 4: Funções unitárias estacionárias de resposta ݃̅(ݐ) e ℎത(ݐ). 

 

Neste segundo método, a resposta corretiva (ݐ)ߞ é expressa como uma combinação linear de ݃̅(ݐ)eℎത(ݐ), ou seja: (ݐ)ߞ = തܽ݃̅(ݐ) + തܾℎത(ݐ) 
 

E, similarmente ao primeiro método, chegamos ao sistema: 

 ቊݒ௧(0) = ௦(0)ݒ + തܽ݃̅(0) + തܾℎത(0)ݒሶ௧(0) = ሶ௦(0)ݒ + തܽ݃̅ሶ(0) + തܾℎതሶ (0) 
 

Porém, agora não se pode simplificar ݃̅(0), ℎത(0), ݃̅ሶ (0) e ℎതሶ (0), e a solução do sistema virá 

da solução da equação matricial: 
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ቈ݃̅(0) ℎത(0)݃̅ሶ(0) ℎതሶ (0)቉ ൜ തܾܽതൠ = ቊݒ௧(0) − ሶ௧(0)ݒ௦(0)ݒ −  ሶ௦(0)ቋݒ

 

Caso o amortecimento do sistema seja crítico, as funções ݃̅(ݐ)eℎത(ݐ) serão dadas por: 

 

(ݐ)̅݃ = ݁ିఠ൫௧ା ೛்൯Δ ൣ(݁ఠ ೛் − 1)(1 + (ݐ߱ + ߱ ௣ܶ൧	
ℎത(ݐ) = ݁ିఠ൫௧ା ೛்൯Δ ൣ ௣ܶ + ఠ݁)ݐ ೛் − 1)൧ 

 
Onde: Δ = 1 + ݁ିଶఠ୲ − 2݁ିఠ୲ 

Exemplos numéricos 

Reservatório sob rajada de vento 

A Figura 5 mostra um desenho esquemático de um reservatório elevado. A forma da 

estrutura é tal que permite apenas deslocamentos horizontais na direção indicada por (ݐ)ݒ na figura. 

Logo, a estrutura pode ser representada por um sistema com um grau de liberdade. 

A massa do reservatório é݉ = 10 t = 10000 kg. A rigidez lateral total dos pilares de 

sustentação é ݇ = 40000kN/m e o coeficiente de amortecimento viscoso da estrutura é ܿ =120 kNs/m. Para simular o efeito de uma rajada de vento lateral na estrutura, será considerada a 

aplicação do carregamento transiente mostrado na Figura 5, que atua durante 0,05 s, com um pico 

de 400 kN. 

 

 
                                Figura 5: Representação do reservatório e carregamento atuante. 
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Inicialmente, foi feita uma comparação entre as respostas obtidas no domínio do tempo 

(integral de Duhamel) e no domínio da freqüência, usando a DFT e a ImFT3. Em todos os 

procedimentos, o intervalo de tempo utilizado foi ∆ݐ = 0,0025	s. O tempo estendido adotado foi ௣ܶ = 1,28	s, e, portanto, o número de pontos discretos no tempo é ܰ = 512. No procedimento 

ImFT, foi usado ܵ = 160, de modo que somente o primeiro 0,4 segundo fosse calculado, pois é 

nesse intervalo de tempo que se espera encontrar os maiores deslocamentos. Nos demais pro-

cedimentos, a resposta foi calculada em todos os pontos, mas somente os 160 primeiros são 

mostrados na resposta, para comparação. 

As respostas são mostradas na Figura 6. Como se pode ver, as respostas são praticamente 

coincidentes. 

Nota-se pelas respostas que as condições iniciais nulas foram bem representadas pelas três 

formulações. Particularmente no uso da DFT, isso se deveu ao fato de que o tempo estendido ௣ܶ = 1,28	s é suficiente para o retorno quase total do sistema ao repouso, ou seja, ௣ܶ foi escolhido 

adequadamente. 

Agora vejamos como seria a resposta obtida por DFT caso o tempo estendido fosse dividido 

em ܰ = 105 pontos, ao invés de ܰ = 512 pontos. Mantendo-se o mesmo intervalo de tempo ∆ݐ = 0,0025	s, o período estendido seria ௣ܶ = 0,2625	s. A resposta estacionária obtida é mostrada 

em linha preta na Figura 7. Nota-se que a periodização induzida pela DFT faz com que o sistema 

apresente um substancial desvio das condições iniciais nulas, e, por causa disso, toda a resposta 

difere da resposta mostrada na Figura 6, obtida com a escolha de um tempo estendido adequado. 

Pode-se utilizar, assim, o método proposto por Veletsos e Ventura para correção desta 

resposta estacionária e obter a resposta transiente correspondente. Utilizando a resposta corretiva 

em termos das funções transientes de resposta, é obtida a resposta mostrada em linha cinza 

(marcada com X) na Figura 7. Como se pode ver, a resposta corrigida é muito mais próxima à 

resposta correta mostrada na Figura 6. 

 

                                                 
3  Do inglês implicit Fourier transform, ou transformada implícita de Fourier. Uma breve explanação é apresentada por Camargo 

(2008). 
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Figura 6: Comparação entre respostas obtidas pelo método da integral de Duhamel, DFT e ImFT. 

 
 

 
Figura 7: Comparação entre respostas obtidas pela DFT com e sem a correção proposta por Veletsos e Ventura. 

Pórtico discretizado por elementos finitos 

Analisemos agora o pórtico mostrado na Figura 9. Trata-se de um pórtico com 6	m de 

largura e 3	m de altura, com duas cargas pontuais atuando. Faz-se a discretização deste em 

elementos finitos, como mostra a Figura 9. Suas propriedades físicas são mostradas na Tabela 2. 
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Tabela2: Propriedades físicas do pórtico da Figura 9. 
 ഥ݉ = 238	kg/m massa por unidade de comprimento dos elementos. ܣ = 0,0303	mଶ área da seção transversal dos elementos. ܫ௭ = 0,000592	mସ momento de inércia da seção transversal dos elementos, para um eixo perpendicular ao 

plano do pórtico, passando pelo centro de gravidade da seção transversal dos elementos. ܧ = 205	GPa módulo de elasticidade longitudinal do material dos elementos. ܰ = 69 número de graus de liberdade do sistema. 

 

A matriz de rigidez do pórtico foi montada e foi criada uma matriz de massa do tipo 

concentrada. Utilizou-se uma matriz de amortecimento proporcional, com amortecimento de 10% 

para o1º eo 48º modos. 

A fim de explorar o método da superposição modal para carregamentos transientes, o 

sistema foi resolvido para a combinação de carregamentos ݌ଵ(ݐ) e݌ଶ(ݐ), mostrada na Figura 

10.Inicialmente, foi obtida a resposta no domínio do tempo, pelo método da integral de Duhamel. 

Foi utilizado um intervalo de tempo ∆ݐ = 0,002	s, e os deslocamentos horizontal e vertical 

do nó central do pórtico (nó A da Figura 9), calculados para o primeiro 0,4	s (ou seja, para os 

primeiros 200 pontos) são mostrados na Figura 11. 

 

 
            Figura 9: Representação do pórtico com carregamento e sua discretização em elementos finitos. 

 

 

 
 

]                                Figura 10:Combinação de carregamentos analisada. 
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Figura 11: Resposta do nó central do pórtico aos carregamentos da Figura 10. 

 

Nota-se que, assim como no exemplo anterior, o tempo estendido utilizado é suficiente para 

o retorno do sistema às condições iniciais nulas, o que o tornaria adequado também para uma 

análise no domínio do tempo pela DFT. 

Entretanto, para demonstrar a aplicação da correção proposta por Veletsos e Ventura, o 

sistema é resolvido também pela DFT com um tempo estendido menor ௣ܶ = 0,136	s. Mantendo o 

intervalo de tempo ∆ݐ = 0,002	s, o número de pontos é agora ܰ = 68. Os deslocamentos obtidos 

para o nó A são mostrados na Figura 12. 

Pode-se ver que, nesse exemplo com múltiplos graus de liberdade, o tempo estendido 

demasiadamente pequeno também induz as condições iniciais nulas a não serem atendidas. Isso faz 

as respostas obtidas diferirem substancialmente das respostas mostradas na Figura 11. Essa 

diferença é bastante evidenciada nos valores dos pontos de deslocamentos máximos e mínimos das 

oscilações. 

Como o sistema de múltiplos graus de liberdade é reduzido a vários sistemas de um grau de 

liberdade, a correção proposta por Veletsos e Ventura pode ser feita sobre as respostas obtidas 

desses sistemas, da forma mostrada no exemplo anterior, que tem um grau de liberdade. 
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Por fim, o sistema é resolvido utilizando a correção e os deslocamentos horizontal e vertical 

são mostrados na Figura 12, sobrepostos às respostas obtidas sem correção. Como se pode ver, a 

resposta corrigida é muito mais próxima à resposta correta mostrada na Figura 11. 

 

 
Figura 12: Respostasobtidas para o nó central, com e sem a correção proposta por Veletsos e Ventura. 

Conclusões 

Este trabalho apresentou dois algoritmos eficientes para correção de erro das soluções da 

análise no domínio da frequência de sistemas estruturais com um ou múltiplos graus de liberdade. 

Após uma exposição da formulação matemática para análise dinâmica de sistemas com um 

grau de liberdade, foi apresentado o método descrito por Veletsos e Ventura (1984, 1985) para 

correção da resposta estacionária obtida pela DFT. Foi demonstrado como, dependendo de fatores 

como o intervalo de discretização ou a escolha do tempo estendido, esta resposta pode diferir da 

resposta exata. Foi mostrado como a correção desta resposta pode ser feita em termos das funções 

unitárias transientes de resposta ou das funções unitárias estacionárias de resposta. 

A alta eficiência deste algoritmo foi demonstrada através de exemplos numéricos, nos quais 

a resposta obtida por DFT com um tempo estendido pequeno demais é corrigida e comparada à 
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resposta obtida com um tempo estendido adequado, além de comparada também às respostas 

obtidas por outros métodos, como através da integral de Duhamel. 
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Efficient algorithms for error correction in frequency domain dynamic analysis 
of structural systems 

Abstract 

This work presents efficiental gorithm savailable in literature to evaluatethe response of structural 
systems subjected to dynamic loadsbymeans of a method which uses a corrective function to find 
the transient response base dont hestationary response given bythe discrete Fourier transform 
(DFT). Becausethe DFT involves a discretization, it induceserrors in the initial conditions, andthis 
procedure aimsto correct the se errors. Two formulations are presented. The firstis in term sof the 
system responses tounitinitial displacement and speed, and the secondis in term sof the responses to 
a traino funit displacement sand to a traino funit speed changes. This formulation was generalized 
tomultipled egreeof freedom systems, using modal superposition, in which a system with N 
degreesof freedom isdecoupledinto N single degreeof freedom systems. Numerical applications 
were solved both in single and multiplede grees of freedom, involving some dynamic loadings. 
 
Keywords: Frequency domain analysis. Fourier transform. Convolution theorem. Efficient 
algorithms. 

Introduction 

The response of a structural system (such as a toweror a building) to a 

givenloaddependsonseveralfactors, andmainlyontheloadingitself. For periodic (cyclic) loadings, 

thecalculationofthediscrete Fourier transform (DFT) usingthefast Fourier transform (FFT) 

algorithmisextremelypowerful, both in precisionandspeed. A periodicloadingimplies a periodic 

(stationary) response and, becauseofthat, bothcanbeeasilyanalyzed in termsoftheir Fourier 

transforms, which, expressed in discreteform, canbeefficientlycalculatedusingthe FFT. 

In the case of a non-periodic (transient) loading, the response of a system willbealso non-

periodic, whichmakes it difficulttobeanalyzed in termsof its Fourier transforms. Usingthe FFT 

willgenerate, becauseofthat, a periodization in both, withanarbitraryperiod. In otherwords, 

thismeansthat, whenthe FFT isusedtofindthe response to a transientloading, it willnotreturnthe 

response tothe original loading, butto a periodizedversionof it instead. The original 

loadingshouldbetruncatedat some point, beyondwhich it willrepeatindefinitely. Ofcoursethe 

response obtainedtothisinducedloadingisnotequaltothe real system response tothe original loading. 

It canbeseenalsothatthe response totheinducedloadingisalsogoingtobeperiodic, whilethe response 

tothe original loadingisgoingtobetransient. Eventhough, atleastinsidetheintervalof a truncatedperiod, 
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it ispossibletomaketheobtained response as near as possibletothe real response, as long as 

specificcareistaken. 

In engineering, normallytransientloadingsmayoccur in a form similar to pulses, i.e. 

appliedduring a given time andthencease. Afterthat, thestructureis in freevibrationanddampsuntil 

rest. Besidesthat, it is common for thestructuretohavenullinitial conditions (nulldisplacement 

andspeed). Oneofthewaysto minimize errorsbetween the calculated and real responses isto use 

anextended time. It means defining to the induced period of the loading a sufficient lylarg evalueso 

that, after the loading vanishes, the structure hasliterally “enough time” to be 

dampeduntilreachingagainnullinitial conditions, before the nextin duced period comes. The value of 

the extended time clearly dependsonfactorssuch as the rigidityand damping factor of the system or 

the loading effective duration, and there are several recommended possible values. 

However, it mayberequiredto use anexcessivelylargeextended time toensurethereturn of the 

system tonullinitial condition suntil the next loading period. The discretization of the period 

givenby the extended time might benotveryrefined, withfew points, oradequatelyrefinedbutwith a 

largenumberof points. Besidesthat, the variable of interestiscommonly the maximum displacement, 

whi choccursnotmuch later than theen do ftheloading and frequently a lot before the system 

reachesrestagain. So, takingthe response considerably after the endof the loading canbe a was te of 

computational storage. 

The problemis then to discussan efficient way to find a sufficiently precise approximation of 

the transient response of a system to a givenload, basedon its corresponding stationary response, in 

a given period. 

So, the objectives of the present paper are: review the procedures to find a transient response 

of linear systems using the classic DFT; examine the nature and magnitudes of the errorsthat 

mightarisefrom its usage; present anefficient procedure, proposedby Veletsosand Ventura (1984, 

1985),tocalculatethetransient response of a linear structure, basedon its stationary response to a 

periodicextensionofthe original loading, using the superposition of a corrective function to the 

stationary response, effectiv elytransforming it in the desired transient response; apply theproposed 

procedure also in the solution of the decoupled equations of movement in the formulation of the 

modal superposition method, in the solution of multipled egreeoffreedom systems; show the 

superiority of the presented procedure with numerical examples. 
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Conclusions 

Thisworkpresentedtwoefficientalgorithmstocorrecterrors in the solution sof frequency 

domain analys is of structural systems with on eormultipledegreesoffreedom. 

After describingthemathematical formulation for dynamicanalysisof single degreeoffreedom 

systems, the method describedby Veletsosand Ventura tocorrect the stationary response obtained 

bythe DFT waspresented. It was demonstrated how this response may differ from the exact 

response, depending on factors such as the discretization intervalor the choice of the extended time. 

It was show nhow the correction of this response canbemade in term sof the transientunit response 

function sorth estation aryunit response functions. 

The high efficiency of this al gorithm was demonstrated bynumerical examples, in which the 

response obtainedby DFT with a short extended time iscorrected and comparedto tha tobtained 

withan adequate extended time. It is comparedalsotothe responses obtained byothermethods, 

including the Duhamel integral. 

 

 
 
 
 


