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Algoritmos eficientes para correcao de erros naanalise
dindmica no dominio da frequéncia de sistemas estruturais

Rodrigo Silveira Camargo®, Walnério Graca Ferreira’
Resumo

Este trabalho apresenta algoritmos €ficientes disponiveis na literatura para encontrar a resposta de
sistemas estruturais submetidos a carregamentos dindmicos, por meio de um método que usa uma
funcéo corretiva para encontrar a resposta transiente a partir da resposta estacionéria obtida pela
transformada discreta de Fourier (ou discrete Fourier transform, DFT). O uso da DFT, por envolver
uma discretizagdo, induz erros nas condigdes iniciais. Esse procedimento visa corrigir esses erros.
S8o0 apresentadas duas formulagbes, uma em termos das respostas do sistema a deslocamento e
velocidade iniciais unitarios e a outra em termos das respostas a um trem de deslocamentos
unitarios e a um trem de variacdes unitérias de velocidade. Essa formulacéo foi generalizada para
sistemas com multiplos graus de liberdade com o uso de superposi¢cdo modal, onde um sistema com
N graus de liberdade é desacoplado em N sistemas com um grau de liberdade. Foram feitas
aplicacbes numéricas, tanto para sistemas com um grau de liberdade, quanto para multiplos graus de
liberdade, envolvendo algumas cargas dinamicas.
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I ntroducéo

A resposta de um sistema estrutural (tal como uma torre ou um edificio) a um carregamento
€ dependente de vérios fatores, e, principamente, do préprio carregamento. Para carregamentos
periddicos (ciclicos), o clculo da transformada discreta de Fourier (ou discrete Fourier transform,
DFT) com o uso do algoritmo da transformada répida de Fourier (ou fast Fourier transform, FFT)
se mostra extremamente poderoso, tanto na precisdo quanto na velocidade de calculo da resposta.
Um carregamento periédico implicara também em uma resposta periodica (estacionéria), e por isso,
ambos podem ser facilmente analisados em termos de suas transformadas de Fourier, que expressos
em forma discretizadapodem ser eficientemente calculadas por meio da transformada répida de
Fourier.

Para 0 caso de um carregamento ndo-periédico (transiente), a resposta de um sistema sera
também néo-periddica, o que faz suas andlises em termos de suas transformadas de Fourier
dificultadas. O uso do algoritmo FFT causarg, por isso, uma periodizacdo em ambas, com periodo
arbitrério. Em outras palavras, isso significa que ao se usar FFT para encontrar a resposta a um
carregamento transiente, encontrar-se-4 N0 a resposta ao carregamento original, mas sim a uma
versdo periodizada deste. O carregamento original devera ser truncado em algum ponto, a partir do
qual se repetiré indefinidamente. E claro que a resposta obtida a esse carregamento induzido no é
igual a resposta real do sistema ao carregamento original, até mesmo porque a resposta ao
carregamento induzido sera também periddica, enquanto que a resposta ao carregamento original
serd transiente. Ainda assim, ao menos dentro do intervalo de um periodo de truncamento, pode-se
tornar a resposta obtida tdo préxima quanto possivel da resposta real, desde que tomados cuidados
especificos.

Em engenharia, normamente carregamentos transientes podem ocorrer em forma
semelhante a de pulsos, ou seja, sdo aplicados durante um determinado tempo e cessam dai em
diante, periodo a partir do qual a estrutura esta em vibracéo livre, e € amortecida até o repouso.
Além disso, é usua a estrutura ter condicdes iniciais nulas, ou sgja, deslocamento e velocidade
nulos. Um dos modos de se minimizar o0s erros entre as respostas calculada e real é o de usar o que
se chama de tempo estendido, ou sgja, definir para o periodo de repeticdo induzida do carregamento
um valor suficientemente alto para que, depois de cessada a aplicacdo do carregamento, a estrutura

literalmente “tenha tempo” para ser amortecida até atingir novamente condicdes iniciais nulas antes
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da agdo do préximo periodo induzido pela periodizagdo. O valor do tempo estendido é claramente
dependente de fatores como a rigidez e fator de amortecimento do sistema, ou a duragdo da
aplicacdo efetiva do carregamento, e existem diversas recomendacfes para possivels valores a se
usar.

Entretanto, pode ser necessario um tempo estendido muito grande para assegurar o retorno
do sistema a condicdes iniciais nulas até o proximo periodo do carregamento. A discretizacdo do
periodo dado pelo tempo estendido em um numero arbitrario de pontos poderd, com isso, ser néo
muito refinada, com poucos pontos, ou ser refinada o suficiente, mas com um nimero muito grande
de pontos. Além disso, muitas vezes o dado de interesse da andlise € o deslocamento maximo do
sistema, 0 que acontece ndo muito depois do fim da acéo do carregamento, e freqlientemente muito
antes de o sistema atingir o repouso nhovamente. Portanto, levar em consideracdo a resposta muito
depois do fim da acéo do carregamento pode ser um desperdicio de armazenamento computacional.

O problema, entdo, € discutir uma maneira eficaz de se encontrar uma aproximagao
suficientemente precisa da resposta transiente de um sistema a um carregamento, partindo-se de sua
resposta estacionaria correspondente, num periodo arbitrério.

Assim, os objetivos deste trabalho sdo: revisar, em termos fisicos, os procedimentos para
encontrar a resposta transiente de sistemas lineares pelo procedimento cléssico da DFT; examinar a
natureza e as magnitudes dos erros que podem resultar de seu uso; apresentar umprocedimento
eficiente, poposto por Veletsos e Ventura (1984, 1985), para calcular a resposta transiente de uma
estrutura linear, a partir de sua resposta estacionaria a uma extensdo periédica do carregamento
original, fazendo uso da superposicdo de uma funcéo corretiva a resposta estacionaria, efetivamente
transformando-a na resposta transiente desgjada; aplicar o procedimento proposto também nas
solucdes das equacbes desacopladas do movimento na formulagdo do método da superposicao
modal para solucéo de sistemas com multiplos graus de liberdade; demonstrar a superioridade do

procedimento apresentado com o uso de exemplos numéricos.

Transformada de Fourier
Definicéo
A transformada de Fourier de f(t)é uma transformada integral definida por:

F(w) = f_oof(t)e‘i“’tdt Q)
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A transformada que, quando aplicada aF (w), € capaz de retornar novamente a funcdo
original f(t), € chamada transformada inversa de Fourier. Por esse motivo, a Eq. (1) é também
chamada transformada direta de Fourier.

A transformadainversa de Fourier é definida por:

£(0) = % f_ F(w)ei“t o @

Se um par de fungbes f(t) e F (w) satisfaz as Egs. (1) e (2), entéo diz-se que elas formam um

par de transformadas de Fourier.
Transformada discreta de Fourier (DFT)

A definicéo das transformadas de Fourier, mostrada nas Egs. (1) e (2), torna muito dificil
seu calculo por meios computacionais. Primeiro, porque o resultado das transformadas € uma
fungdo continua, e é extremamente dificil e demorado tratar de fungfes continuas analiticamente em
computadores. Por meio de softwares, € muito mais eficiente tratar da funcéo discretizada, ou sgja,
na forma de pontos discretos igualmente espacados. Além disso, em casos praticos, muitas vezes a
fungdof(t), cuja transformada esta sendo calculada, pode representar o resultado de dados obtidos
experimentalmente, e por isso também conhecida apenas em pontos discretos.

Em segundo lugar, porque os limites de integracdo das transformadas tornam o nimero de
pontos discretos infinito. Computacionalmente, € preciso efetuar os calculos apenas num intervalo
finito de pontos, ou sgja, truncar as integragoes.

Essa discretizacdo transforma as integrais das transformadas de Fourier em somatérios. Da
mesma forma, o truncamento transforma os limites —ooe coem valores proprios definidos. E claro
gue esses procedimentos converterdo os resultados antes exatos obtidos pelas Egs. (1) e (2) em
aproximacoes, induzindo a erros que devem ser reduzidos com a escolha apropriada do
espacamento entre os pontos discretos e do interval o de truncamento.

As Egs. (1) e (2), quando gustadas como explicado, sdo as equacdes da transformada

discreta de Fourier, ou, do inglés, discrete Fourier transform(DFT), definidas por:

N-1
F(om) = At ). f(t)e ™™™ % ,m=0,..,N -1 3
n=0

Revista Sul-Americana de Engenharia Estrutural, Passo Fundo, v. 9, n. 2,maio/ago. 2012
7



N—
ft) = Z F(wm)e™ N ,n=0,..,N -1 @)

Para a aplicacdo das equagdes acima, adota-se um periodo Tpara o truncamento de f(t).
Dentro desse periodo, sdo tomados N pontos discretos, igualmente espagados porAt = T/N. O
valor de f(t)no n-ésimo ponto € dado por f(t,), parao qua t,, = nAt.

Da mesma forma, a transformada discreta F(w) de f(t) terd como resultado N pontos,
separados pelo intervalo Aw = 2r/T. O vaor do m-ésimo ponto é F(w,,), para o qua w,, =

Uy Aw, com u,,, dado pela Tabela 1.

Tabelal: Frequéncias discretas.

m Hm )
0 0 0
1 1 Aw
2 2 20w
N/2-1 N/2-1 (N/2 — 1)Aw
N/2 N/2 (N/2)Aw
N/2+1 —N/2+1 (=N/2 + DAw
N/2 +2 —N/2+2 (=N/2 + 2)Aw
N -2 —2 —2Aw
N -1 —1 —Aw

Essa definicdo “diferenciada” de w,,, apenas reflete a periodicidade induzida tanto para os
pontos discretos f(t,) quanto para os pontos discretos F(w,,). De fato, w,, = wy,y, € €ssa

definicéo de w,,, € necessaria por adequacao puramente matematica.
Teorema da convolucéo

Esta € uma propriedade importante da convolucdo, simbolizada por um asterisco (x) e

definida por:

£+ g(0) = f F@g(t - Ddr = f 9@f (¢ - e 5

O teorema da convolucdo relaciona a convolugéo diretamente com a transformada de

Fourier. Sgam f(t) e g(t) duas fungbes quaisquer, e sgam F(w) e G(w) suas respectivas
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transformadas de Fourier. O teorema da convolugdo afirma que as fungdes f(t) * g(t) e F(w) -
G(w) formam um par de transformadas de Fourier. Da mesma forma, as fungbes f(t) - g(t)e
F(w) * G(w) também formam um par de transformadas de Fourier.

Denotando o operador da transformada de Fourier porF, o teorema da convolucéo pode ser

escrito matemati camente na forma:

Fif@) =g} = F{f ()} Flg®)}
FUf@©) - g} = F{f®)} * Flg®)}

Se a variavel trepresenta tempo, f(t) e g(t) estard0 no dominio do tempo e suas
transformadas estardo no dominio da freqiiéncia. Pelo teorema da convolugédo, o produto entre elas
resulta numa fungdo cuja transformada € a convolugdo das transformadas de f(t) e g(t). Em outras
palavras, multiplicacdo no tempo equivale a convolucdo na frequéncia.  Similarmente,
multiplicagdo na freguiéncia equivale a convolugéo no tempo. Uma demonstracéo do teorema da

convolugdo pode ser encontrada em Brigham (1974).
Andlisedeerros

Como afirma Calenzani (2002), os erros decorrentes da utilizagdo da transformada discreta
de Fourier, em vez da transformada classica, podem ndo apenas estar associados somente as
aproximagoes feitas quando se substitui as integrais por somatérios. Existem realmente erros que
s80 inerentes ao processo de obtencdo de N pontos discretos da funcéo original, ao truncamento e &
obtencdo de N pontos discretos na fungdo transformada.

Segundo MeirovitchapudCalenzani (2002), a derivacdo das transformadas discretas de
Fourier envolve trés passos: discretizacdo no dominio do tempo, truncamento no dominio do tempo
e discretizacdo no dominio da fregiéncia. Todo o processo de transformacdo de uma fungdo
continua do tempo em uma funcdo equivalente discretizada esta mostrado na Figura 1.

Seja, agora, uma funcdo f(t) qualquer e sua transformada direta F(w), de acordo com a
Figural (a). Seja A, (t) umafungdo definida como um trem de impul sos unitérios separados por um
intervalo At e Ay(w) sua transformada direta (Figura 1 (b)). E sgja, também, x(t) uma funcio
definida como valendo 1 num intervalo de comprimento T = NAt (que engloba, portanto, N
impulsos) e 0 nos demais pontos, e sua transformada direta X (w), como a Figura 1 (d) indica. Por

ultimo, sgja A, (t) umafuncdo semelhante a fungdo A, (t), porém, com impulsos de amplitude igual
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a% e separados por um intervalo T. Ela e sua transformada direta A, (w) S mostradas na Figura 1
().

A primeira parte do processo de discretizagéo é a discretizacdo no dominio do tempo. Faz-se
isso multiplicando a funcéo f(t) pela funcdo A,(t). Logo, pelo teorema da convolucédo, a
transformada de Fourier da funcio resultante € a convolugdo das fungbes F(w) e Ag(w). Os
resultados das duas operacdes estdo na Figura 1 (¢). O resultado no dominio do tempo € um trem de
impulsos com amplitude modulada pela funcéo f(t), e no dominio da frequiéncia, € a superposi¢cao
dafungdo F(w) repetida em intervalosiguais a Aw = 2w /At. Isso gera a primeira fonte de erros, o
fenbmeno de aliasing, que é a contaminagdo entre um periodo e outro no espectro de freqliéncias.

A segunda parte € o truncamento, que é a multiplicagdo da funcéo f(t)A,(t)pela funcdo
x(t). Damesma maneira, faz-se a convolugio entre as fungdes F (w) * Ay(w) e X (w) e o resultados
estdo na Figura 1 (e). No dominio da freqiiéncia, ocorrem mais erros devido ao efeito rippling, que
s80 as ondul agdes que surgem no espectro, por causa da convolugdo ef etuada.

A terceira parte € a discretizagdo no dominio da freguéncia. Dessa vez, é feita uma
multiplicacido no dominio da frequéncia entre as fungbes F(w) * Ag(w) * X(w) € A (w).
Consequentemente, é feita uma convolucéo entre as fungdes f(t)A,(t)x(t) e A,(t), e o resultado
final dadiscretizacdo € mostrado na Figura 1 (g). Nessa Ultima parte, a fun¢éo no dominio do tempo
se torna periodica e, no dominio da freqliéncia, €la se torna discretizada. A escolha do intervalo
entre os impulsos da fungdo A;(w) como sendo igual a 2m/T é proposital, e faz com que os
impulsos da fungé@o A, (t) segjam espagcados em exatamente T = NAt. Por isso, nessa etapa, ndo
ocorre o efeito de aliasing no dominio do tempo.
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Figura 1: As etapas de discretizagdo de uma fungdo e de sua transformada.

Comparando as Figuras 1 (a) e 1 (g), vé-se que a discretizacdo de f (t) néo difere da funcéo

original, a menos de uma constante, enquanto que a discretizacdo de F (w) € ligeiramente diferente

de G(w). Isso mostra que trabalhar com pontos discretos, em vez de com fungdes continuas, induz a
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erros, originados dos efeitos de aliasing e rippling. Para minimizar o efeito de aliasing, deve-se
tomar a funcdo A,(t) com impulsos unitarios mais préximos, ou segja, deve-se tomar valores
pequenos de At. Com isso, os impulsos da fungdo A,(w) estardo mais afastados, e ocorrerd menor
interferéncia entre as fregtiéncias de um periodo e outro. Para minimizar o efeito rippling, deve-se
fazer a funcdo x(t) englobar o maior niUmero de pontos possivel, ou sgja, deve-se tomar valores
grandes de N. Assim, afuncéo X (w) estara mais préxima de uma fungdo impulso unitario, e menor
influéncia ela tera na convolugdo do processo de truncamento. A relacdo que existe entre as funcdes
discretizadas da Figura 1 (g) € andloga a relacdo que existe entre as fungdes continuas da Figura 1
(a). Enquanto que as Ultimas se relacionam pelas transformadas de Fourier, as primeiras se

relacionam pelas transformadas discretas de Fourier, dadas pelas Egs. (3) e (4).
Andlise dinAmica de sistemas com um grau de liberdade

Para sistemas com um grau de liberdade, o procedimento adotado € o de supor toda a sua
massa m concentrada em um unico ponto, que pode se deslocar no mesmo sentido do grau de
liberdade permitido pelo sistema. Como esse deslocamento acontece em uma Unica diregdo, pode-se
expressa-lo por uma fungdo escalar v(t), que pode assumir valores positivos ou negativos,
significando deslocamentos no mesmo sentido ou contrérios a um dado referencial. A variavel t
representa 0 tempo, e as derivadas v(t) e i(t) da resposta sdo, respectivamente, a velocidade e a
aceleracao do sistema.

A rigidez é representada pela constante el éstica k, expressa em unidade de forca por unidade
de distancia. Assume-se que essa rigidez obedece alel de Hooke, ou sgja, exerce seu efeito por uma
forca de intensidade diretamente proporcional, com mesma direcdo e sentido oposto ao
deslocamento do sistema. Matematicamente, temos f; = —kv(t).

O amortecimento do sistema é representado pela constante de amortecimentoviscosoc,
expressa em unidade de forga por unidade de velocidade. Este € uma aproximacéo do arraste com o
meio em que 0 sistema estd imerso (na grande maioria das vezes, 0 ar), juntamente com o atrito
generalizado de suas partes internas. Assim, é expressa por uma forca de intensidade diretamente
proporcional, com mesma diregdo e sentido oposto a velocidade do sistema, ou sgja, fp = —cv(t).

A carga dindmica que atua no sistema é expressa por uma funcdo escalar p(t), atuante na

massam e ha mesma diregdo do deslocamento a ela permitido.
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A Figura 2 mostra um diagrama de corpo livre da massa do sistema. As forgas que nela
atuam sdo o carregamento p(t), aforca elastica f5(t) e aforca de amortecimento f,,(t). Aplicando

asegundalei de Newton a massam e rearrumando, fica:

Z F = mi(t)

p(t) — kv(t) — cv(t) = mi(t)

mi(t) + cv(t) + kv(t) = p(t) (6)
—+— (1) —— (1)
— —— fo(t)~—
k m —p(?) m — (%)
— 00000 — fs(t)~—
& &

Figura2: Modelo para sistema SDOF e diagrama de corpo livre damassam.

A Eq. (6) é uma egquacdo diferencia de segunda ordem em v(t) que rege o deslocamento do
sistema em fungdo do tempo. E a equacdo fundamental dos sistemas de um grau de liberdade
(1GL), e por isso € chamada equacdo do movimento. Sua solucéo v(t) é arespostado sistemae éa

incognita a ser encontrada, por qualquer método que se queira.
Solucéo da equagéo do movimento

O modo classico de se resolver a equacdo do movimento € com o uso da transformada de
Fourier. Simbolizando o operador da transformada por F, pode-se aplica-la a ambos os membros da
Eqg. (6) e fazer as seguintes arrumagoes:

F{mv(t) + cv(t) + kv(t)} = F{p(t)}

mF{H(t)} + cF{w()} + kF{v(t)} = P(@)
—0’mF{w()} + iwcFw ()} + kF{v(t)} = P(@)
—’mV (@) +iwcV (@) + kV(@) = P(@)
(—@*m + iwc + k)V (@) = P(®@)

V(w) =

P&
—w’m+iwc+k @)

V(@) = H@)P(@) (7)
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Na Eq. (7), as transformadas fazem a mudanca de dominio e, consegiientemente, de variavel
independente. Foi escolhida a variavel w (em vez de simplesmente w) para representar o dominio
da frequiéncia, para diferencié-la da freqiiéncia natural do sistemaw = ,/k/m. Foi definida ainda a

funcdo complexa de resposta na frequéncia, representada por H (w) e dada por:

1
—-w?m+iwc + k

H(w) =

(8)

Agora notemos que a Eq. (7) j& é a resposta do sistema a0 carregamento p(t), SO que
expressa no dominio da fregiiéncia. Para encontrar a resposta no dominio do tempo, deve-se aplicar
atransformada inversa de Fourier, da seguinte forma:

o)

v(t) = %j V(@)e®tdw

v(t) = % f_ " H@)P@)e®de ©)

Em resumo, o procedimento para encontrar a resposta com o uso da transformada de Fourier
€, inicialmente, encontrar a transformada de Fourier do carregamento p(t), multiplicdlo pela
funcdo complexa de resposta na freqiiéncia H(w) e encontrar a transformada inversa de Fourier
desse produto.

A verdadeira vantagem no uso da transformada de Fourier para resolver a equagdo do
movimento esta no uso de sua forma discreta, a DFT. Com p(t) expresso na forma de pontos

discretos, as formas equivaentes as Egs. (7) e (9) com o uso da DFT sdo, respectivamente:

N-1
P(@m) = At Z P(ta)e ™% ,m = 0,..,N — 1 (10)
n=0
AG N-1
w mn
v(tn) =—— ZO H(&m)P(@)e”™ ¥ ,n=0,..,N -1 (12)
m=

Como jafoi visto, uma conseqiiéncia inerente ao processo de discretizacdo de p(t) ev(t) é
a periodizacdo de ambas. Por isso, deve-se escolher um periodo T,para o truncamento destas, que
sera chamado tempo estendido. Naturalmente, N € o niUmero de pontos em que o tempo estendido
sera dividido,At = T,,/N € o intervalo de separacdo entre os pontos discretos no tempo e Aw =

2m/T,€ o intervalo de separacdo entre os pontos discretos na freqliéncia.
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Um método para correcao da resposta per manente

A escolha de um tempo estendido adequado € essencial para garantir uma boa preciséo na
resposta permanente final. Porém, dependendo dos parémetros do sistema e da precisdo que se
busca alcancar, um valor adequado pode ser relativamente grande, e isso pode significar um esforco
computaciona muito alto, requerendo um tempo maior de célculo.

Além disso, 0 aumento do tempo estendido apenas permite um livre retorno do sistema ao
repouso €, grande parte das vezes, 0 ponto de interesse que se pretende analisar esta nos momentos
iniciais da aplicacdo do carregamento. Nessas situacdes, a maior parte da resposta é calculada mas
nao é Util paraandlise, constituindo um esforco de calculo “indtil”.

Utilizar um tempo estendido menor, no entanto, fard a resposta permanente encontrada
diferir excessivamente da resposta transiente. Veletsos e Ventura (1984, 1985) apresentam um
método para corrigir uma resposta permanente calculada por DFT com um tempo estendido
qualquer, e aproximé-la da resposta transiente.

O método se baseia no fato de que, uma vez que o0 carregamento € 0 mesmo tanto para a
resposta transiente quanto para a permanente, entdo a diferenca entre elas deve se originar de
diferencas entre os estados iniciais das duas respostas. Da mesma forma, se uma resposta for
conhecida, a outra pode ser determinada pela superposicdo de uma resposta (em vibragéo livre)
chamada corretiva, que assegura que o estado inicia da resposta permanente se conformara ao da
transiente.

Se chamarmos v, (t)a resposta permanente obtida pela DFT entdo a resposta transiente v, (t)

pode ser determinada por:

ve(t) = vs(t) + (1)

Onde {(t) é a resposta corretiva que representa 0 efeito das condi¢bes iniciais nao
satisfeitas.

Ainda segundo Veletsos e Ventura (1984, 1985), dois métodos podem ser utilizados para
calcular (t). No primeiro, esta é expressa em termos das fungdes unitarias transientes de resposta,
enquanto que, no segundo, esta é expressa em termos das fungdes unitérias permanentes de

resposta. Essas fungdes serdo explicadas a seguir:
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Resposta corretiva em ter mos das funcgoes transientes de resposta

As funcbes unitarias de resposta sdo fungdes que representam a resposta exata de um
sistema em vibracdo livre a um deslocamento inicial unitario (representada por g(t)) e a uma
velocidade inicial unitéria (representada por h(t)), respectivamente. Dependendo do
amortecimento, so determinadas pela substituicdo, nas expressdes da solucdo geral analitica?, de
v(0) =1 ev(0) = 0 paraencontrar g(t) oudev(0) = 0 ev(0) = 1 paraencontrar h(t).

Fazendo as substituicbes na expressdo da solucdo geral para 0 caso mais comum de
amortecimento, que é o subcritico, o resultado €: (lembrando que w = \/k/_m é afreqléncia natural
de vibragio do sistema, § = ——¢ a taxa de amortecimento do sistema e wp = w1 —-¢2% a

freguiéncia natural do sistema amortecido.)

w
g(t) = et [cos wpt + Sz—sen a)Dt]
Wp

1
= —Swt |
h(t) =e [CUD sen wp t]
Osgréficosde g(t) e h(t) estdo mostrados na Figura 3.

1190 K(?)

/\ \
\/

Figura 3: Fungdes unitérias transientes de resposta g (t) e h(t).

[N —,
\J

A funcé&o corretiva seria, portanto, uma combinacéo linear de g(t) e h(t), ou sgja

¢(t) = ag(t) + bh(t)

As constantes a e b devem ser determinadas a partir das condi¢des iniciais obtidas em v (t)

e das condigOes iniciais pretendidas para a resposta transiente v, (t) (geralmente nulas), ou sgja

2 Ver, por exemplo, as egs. (3.29), (3.23), (3.24) e (3.25) apresentadas por Camargo (2008).
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v:(0) =v5(0) +3(0) e 1:(0) = v5(0) + £(0)

Substituindo os valoresde {(t)e {(t) = ag(t) + bh(t), temos o sistema:

{vt(O) = v,(0) + ag(0) + bh(0)
,(0) = ¥5(0) + ag(0) + bh(0)

Cuja solucao, sabendo-se que g(0) = h(0) = 1 e g(0) = h(0) = 0, &
a=v:(0)-v(0) e b=v(0)—-v500)
Finalmente, no caso em que as condi¢desiniciais pretendidas para v, (t) sdo nulas, fica:

a = —v,(0) e b = —1v.(0)

Resposta corretiva em ter mos das fungdes per manentes de resposta

As funcbes g(t) e h(t) sdo chamadas funges unitérias transientes de resposta porque
descrevem aresposta transiente de um sistema a condicdes iniciais unitarias. De modo semel hante,
as funcdes unitarias permanentes de resposta descrevem a resposta de um sistema em vibragao livre
a uma serie periddica de variagdes unitarias de deslocamento e a uma série periddica de variagdes
unitérias de vel ocidade. Essas funcdes sfo representadas por g(t) e h(t), respectivamente.

Além disso, o periodo entre as variagdes unitarias de deslocamento e velocidade € igual ao
periodo utilizado no célculo de v,(t) pela DFT. E importante notar que embora g(t) sofra
variagdes unitarias de deslocamento, ela ndo necessariamente teré condicdo inicial de deslocamento
g(0) = 1. Da mesma maneira, embora h(t) sofra variagdes unitarias de velocidade, ela ndo
necessariamente teré condicgo inicial de velocidade h(0) = 1.

A funcdo g(t) pode ser encontrada substituindo-se, nas expressdes da solucdo geral

analitica, as seguintes condi¢desiniciais:

v:(0) —v.(Ty) =1 e  9.(0)—v.(T,) =0

Jah(t) pode ser encontrada da mesma maneira, porém com as seguintes condicdes iniciais:

v:(0) —v.(T,) =0 e  9.(0)—v(T,) =1
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Em seguida, troca-se v,(t) por g(t) ou h(t), conforme o caso. Veletsos e Ventura (1984)

apresentamg (t)eh(t)apenas para amortecimento subcritico. As respostas sdo:

e—{wt

g =

—-éwt
" e E _ e_ngp (
A 1-—¢&2

—-¢wt

[1 — %0 (cos wpTy — cos wpt +

\/%fzsen wDTp>]

coswpT, + sen wDTp>] senwpt

§
ie

¢ [(e7%“T senwpT,) cos wpt + (1 — e 4°™ cos wp T, ) sen wpt]

h(t) =

wplA
Paraas quais:

A=1+e %% — 2e728%T cos wp T,

Os gréficos de g(t)eh(t) estdo mostrados na Figura 4.

g(?) h(?)

\\ /\:r\: t\/\ /\/\
S

Figura 4: Fungdes unitérias estaciondrias de resposta g(t) e h(t).

Neste segundo método, a resposta corretiva ¢ (t) € expressa como uma combinagdo linear de

g(t)eh(t), ou sga
¢(t) = ag(t) + bh(t)

E, ssimilarmente ao primeiro método, chegamos ao sistema:

{%(0) = 15(0) + ag(0) + bh(0)
9,(0) = 1,(0) + @g(0) + bh(0)
Porém, agora ndo se pode simplificar g(0), h(0), §(0) e E(O), e a solugdo do sistemavira

da solugdo da equacéo matricial:
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[g‘(O) E(O) {c‘z}: {vt(O)—vs(O)}
§(0) hJWB)  (9.(0) —v,(0)

Caso 0 amortecimento do sistema seja critico, as fungdes g(t)eh(t) serfo dadas por:

e—w(t+Tp)
g = B — [(e“T — 1)(1 + wi) + wT,)

e—w(t+Tp)

i [T, + t(e®™ — 1)]

Onde;

A=1+e 20t —2g 0t
Exemplos numéricos

Reservatério sob rajada de vento

A Figura 5 mostra um desenho esquematico de um reservatério elevado. A forma da
estrutura € tal que permite apenas deslocamentos horizontais na diregdo indicada por v(t) nafigura
Logo, a estrutura pode ser representada por um sistema com um grau de liberdade.

A massa do reservatério ém = 10t = 10000 kg. A rigidez lateral total dos pilares de
sustentacdo € k = 40000kN/m e o coeficiente de amortecimento viscoso da estrutura € ¢ =
120 kNs/m. Para simular o efeito de uma rajada de vento lateral na estrutura, sera considerada a
aplicacdo do carregamento transiente mostrado na Figura 5, que atua durante 0,05 s, com um pico

de 400 kN.

——— p(?) (kN)
PO 400

m=10 t

k=40000 kN /m

t (s)

0,025 0,050

Figura 5: Representacdo do reservatério e carregamento atuante.
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Inicialmente, foi feita uma comparac@o entre as respostas obtidas no dominio do tempo
(integral de Duhamel) e no dominio da freqiiéncia, usando a DFT e a ImFT®. Em todos 0s
procedimentos, o intervalo de tempo utilizado foi At = 0,0025 s. O tempo estendido adotado foi

T, = 1,28 s, e, portanto, 0 nimero de pontos discretos no tempo € N = 512. No procedimento

ImFT, foi usado S = 160, de modo que somente o primeiro 0,4 segundo fosse calculado, pois é
nesse intervalo de tempo que se espera encontrar 0s maiores deslocamentos. Nos demais pro-
cedimentos, a resposta foi calculada em todos os pontos, mas somente os 160 primeiros sao
mostrados na resposta, para comparagao.

As respostas séo mostradas na Figura 6. Como se pode ver, as respostas sdo praticamente
coincidentes.

Nota-se pelas respostas que as condicdes iniciais nulas foram bem representadas pelas trés
formulacdes. Particularmente no uso da DFT, isso se deveu ao fato de que o tempo estendido
T, = 1,28 s é suficiente para o retorno quase total do sistema ao repouso, ou sgja, T, foi escolhido
adequadamente.

Agora vejamos como seria a resposta obtida por DFT caso o tempo estendido fosse dividido
em N = 105 pontos, a0 invés de N = 512 pontos. Mantendo-se 0 mesmo intervalo de tempo
At = 0,0025 s, 0 periodo estendido seria T, = 0,2625 s. A resposta estacionaria obtida € mostrada
em linha preta na Figura 7. Nota-se que a periodizacéo induzida pela DFT faz com gue o sistema
apresente um substancial desvio das condigfes iniciais nulas, e, por causa disso, toda a resposta
difere da resposta mostrada na Figura 6, obtida com a escolha de um tempo estendido adequado.

Pode-se utilizar, assm, o método proposto por Veletsos e Ventura para correcdo desta
resposta estacionaria e obter a resposta transiente correspondente. Utilizando a resposta corretiva
em termos das fungdes transientes de resposta, € obtida a resposta mostrada em linha cinza
(marcada com X) na Figura 7. Como se pode ver, a resposta corrigida € muito mais proxima a

resposta correta mostrada na Figura 6.

% Do inglés implicit Fourier transform, ou transformada implicita de Fourier. Uma breve explanacéo é apresentada por Camargo
(2008).
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0,010}

0,005+

-0,005

-0,010-+
Figura6:

O Integral de Duhamel
% X DFT
X & ImFT

Comparagéo entre respostas obtidas pelo método daintegral de Duhamel, DFT e ImFT.

O DFT sem corregao
X DFT com corregao

-0,005

0,010

Figura7:

Comparagao entre respostas obtidas pela DFT com e sem a correcdo proposta por Veletsos e Ventura.

Portico discretizado por elementosfinitos

Analisemos agora 0 portico mostrado na Figura 9. Trata-se de um portico com 6 m de

largura

e 3m de altura, com duas cargas pontuais atuando. Faz-se a discretizagdo deste em

elementos finitos, como mostra a Figura 9. Suas propriedades fisicas sGo mostradas na Tabela 2.
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Tabela2: Propriedades fisicas do portico da Figura 9.

m = 238 kg/m massa por unidade de comprimento dos elementos.
A =0,0303 m? &rea da se¢fo transversal dos elementos.
I, = 0,000592 m* momento de inércia da segdo transversal dos elementos, para um eixo perpendicular a0
plano do portico, passando pelo centro de gravidade da secéo transversal dos elementos.
E = 205 GPa maodul o de elasticidade longitudinal do material dos elementos.
N =69 numero de graus de liberdade do sistema.

A matriz de rigidez do portico foi montada e foi criada uma matriz de massa do tipo
concentrada. Utilizou-se uma matriz de amortecimento proporcional, com amortecimento de 10%
para 01° eo 48° modos.

A fim de explorar 0 método da superposicdo modal para carregamentos transientes, o
sistema foi resolvido para a combinagdo de carregamentos p,(t) ep,(t), mostrada na Figura
10.Inicialmente, foi obtida a resposta no dominio do tempo, pelo método daintegral de Duhamel.

Foi utilizado um intervalo de tempo At = 0,002 s, e os deslocamentos horizontal e vertical
do no central do pértico (né A da Figura 9), calculados para o primeiro 0,4 s (ou sga, para 0s

primeiros 200 pontos) sdo mostrados na Figura 11.

6m
l pi(t) pi(t) l A

p2(t) _“‘ 1.5m
— 3m paAt)—
1,5m

Figura 9: Representacdo do portico com carregamento e sua discretizagdo em elementos finitos.

p(t) (kN) pa(t) (kN)

2000 2000+

: : t(s) : t(s)
0,04 0,08 0,12 0,04 0,08 0,12

| Figura 10:Combinac&o de carregamentos analisada.
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0,040

0,030 1

0,020 1

0,010 +

0,000

deslocamento (m)

-0,010 A

-0,020 A

-0,030 A

-0,040
tempo (s)

—<— Deslocamento horizontal —&— Deslocamento vertical

Figura 11: Resposta do n6 central do p6rtico aos carregamentos da Figura 10.

Nota-se que, assim como ho exemplo anterior, o tempo estendido utilizado € suficiente para
o retorno do sistema as condicles iniciais nulas, 0 que o tornaria adequado também para uma
andlise no dominio do tempo pela DFT.

Entretanto, para demonstrar a aplicacdo da correcéo proposta por Veletsos e Ventura, o

sistema € resolvido também pela DFT com um tempo estendido menor T,, = 0,136 s. Mantendo o

intervalo de tempo At = 0,002 s, 0 nimero de pontos é agora N = 68. Os deslocamentos obtidos
parao no A sdo mostrados na Figura 12.

Pode-se ver gue, nesse exemplo com multiplos graus de liberdade, o tempo estendido
demasiadamente pequeno também induz as condigdes iniciais nulas a ndo serem atendidas. 1sso faz
as respostas obtidas diferirem substancialmente das respostas mostradas na Figura 11. Essa
diferenca € bastante evidenciada nos valores dos pontos de deslocamentos méaximos e minimos das
oscilacoes.

Como o sistema de multiplos graus de liberdade é reduzido a varios sistemas de um grau de
liberdade, a correcdo proposta por Veletsos e Ventura pode ser feita sobre as respostas obtidas

desses sistemas, da forma mostrada no exemplo anterior, que tem um grau de liberdade.

Revista Sul-Americana de Engenharia Estrutural, Passo Fundo, v. 9, n. 2,maio/ago. 2012
23



Por fim, o sistema é resolvido utilizando a correcéo e os deslocamentos horizontal e vertical
s80 mostrados na Figura 12, sobrepostos as respostas obtidas sem correcdo. Como se pode ver, a

resposta corrigida € muito mais proxima a resposta correta mostrada na Figura 11.

0,040

0,030
0,020 4
0,010

0,000 447

-0,010

deslocamento (m)

-0,020 |

-0,030 |

-0,040 -

-0,050

tempo (s)
——Deslocamento horizontal (sem correcdo) —e—Deslocamento vertical (sem corre¢éo)
—a—Deslocamento horizontal (com corregdo) —o— Deslocamento vertical (com corre¢éo)

Figura 12: Respostasobtidas para o nd central, com e sem a corregao proposta por Veletsos e Ventura.
Conclusoes

Este trabalho apresentou dois algoritmos eficientes para correcéo de erro das solucbes da
andlise no dominio da frequéncia de sistemas estruturais com um ou multiplos graus de liberdade.

Apdbs uma exposicdo da formulagdo matematica para andlise dindmica de sistemas com um
grau de liberdade, foi apresentado o método descrito por Veletsos e Ventura (1984, 1985) para
correcao da resposta estacionaria obtida pela DFT. Foi demonstrado como, dependendo de fatores
como o intervalo de discretizacdo ou a escolha do tempo estendido, esta resposta pode diferir da
resposta exata. Foi mostrado como a corre¢ao desta resposta pode ser feita em termos das fungbes
unitérias transientes de resposta ou das fungdes unitérias estacionérias de resposta.

A alta eficiéncia deste algoritmo foi demonstrada através de exemplos numeéricos, nos quais

a resposta obtida por DFT com um tempo estendido pequeno demais é corrigida e comparada a
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resposta obtida com um tempo estendido adequado, além de comparada também as respostas

obtidas por outros métodos, como através daintegral de Duhamel.
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Efficient algorithmsfor error correction in frequency domain dynamic analysis
of structural systems

Abstract

This work presents efficiental gorithm savailable in literature to evaluatethe response of structural
systems subjected to dynamic loadsbymeans of a method which uses a corrective function to find
the transient response base dont hestationary response given bythe discrete Fourier transform
(DFT). Becausethe DFT involves a discretization, it induceserrors in the initial conditions, andthis
procedure aimsto correct the se errors. Two formulations are presented. The firstis in term sof the
system responses tounitinitial displacement and speed, and the secondis in term sof the responses to
atraino funit displacement sand to a traino funit speed changes. This formulation was generalized
tomultipled egreeof freedom systems, using moda superposition, in which a system with N
degreesof freedom isdecoupledinto N single degreeof freedom systems. Numerical applications
were solved both in single and multiplede grees of freedom, involving some dynamic loadings.

Keywords: Frequency domain anaysis. Fourier transform. Convolution theorem. Efficient
algorithms.

I ntroduction

The response of a structural system (such as a toweror a building) to a
givenloaddependsonseveralfactors, andmainlyontheloadingitself. For periodic (cyclic) loadings,
thecalculationofthediscrete Fourier transform (DFT) usingthefast Fourier transform (FFT)
algorithmisextremelypowerful, both in precisionandspeed. A periodicloadingimplies a periodic
(stationary) response and, becauseofthat, bothcanbeeasilyanalyzed in termsoftheir Fourier
transforms, which, expressed in discreteform, canbeefficientlycal culatedusingthe FFT.

In the case of a non-periodic (transient) loading, the response of a system willbealso non-
periodic, whichmakes it difficulttobeanalyzed in termsof its Fourier transforms. Usingthe FFT
willgenerate, becauseofthat, a periodization in both, withanarbitraryperiod. In otherwords,
thismeansthat, whenthe FFT isusedtofindthe response to a transientloading, it willnotreturnthe
response tothe origina loading, butto a periodizedversionof it instead. The origind
loadingshouldbetruncatedat some point, beyondwhich it willrepeatindefinitely. Ofcoursethe
response obtai nedtothisinducedl oadingi snotequaltothe real system response tothe original loading.
It canbeseenalsothatthe response totheinducedl oadingisal sogoingtobeperiodic, whilethe response
tothe original loadingisgoingtobetransient. Eventhough, atleastinsidetheinterval of a truncatedperiod,

Revista Sul-Americana de Engenharia Estrutural, Passo Fundo, v. 9, n. 2,maio/ago. 2012
26



it ispossibletomaketheobtained response as near as possibletothe real response, as long as
specificcareistaken.

In engineering, normallytransientloadingsmayoccur in a form similar to pulses, i.e.
appliedduring a given time andthencease. Afterthat, thestructureis in freevibrationanddampsuntil
rest. Besidesthat, it is common for thestructuretohavenullinitial conditions (nulldisplacement
andspeed). Oneofthewaysto minimize errorsbetween the calculated and real responses isto use
anextended time. It means defining to the induced period of the loading a sufficient lylarg evalueso
that, after the loading vanishes, the structure hadliterally “enough time” to be
dampeduntilreachingagainnullinitial conditions, before the nextin duced period comes. The value of
the extended time clearly dependsonfactorssuch as the rigidityand damping factor of the system or
the loading effective duration, and there are several recommended possible values.

However, it mayberequiredto use anexcessivelylargeextended time toensurethereturn of the
system tonullinitial condition suntil the next loading period. The discretization of the period
givenby the extended time might benotveryrefined, withfew points, oradequatelyrefinedbutwith a
largenumberof points. Besidesthat, the variable of interestiscommonly the maximum displacement,
whi choccursnotmuch later than theen do ftheloading and frequently a lot before the system
reachesrestagain. So, takingthe response considerably after the endof the loading canbe a was te of
computational storage.

The problemis then to discussan efficient way to find a sufficiently precise approximation of
the transient response of a system to a givenload, basedon its corresponding stationary response, in
agiven period.

S0, the objectives of the present paper are: review the procedures to find a transient response
of linear systems using the classic DFT; examine the nature and magnitudes of the errorsthat
mightarisefrom its usage; present anefficient procedure, proposedby Veletsosand Ventura (1984,
1985),tocal culatethetransient response of a linear structure, basedon its stationary response to a
periodicextensionofthe original loading, using the superposition of a corrective function to the
stationary response, effectiv elytransforming it in the desired transient response; apply theproposed
procedure also in the solution of the decoupled equations of movement in the formulation of the
modal superposition method, in the solution of multipled egreeoffreedom systems; show the

superiority of the presented procedure with numerical examples.
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Conclusions

Thisworkpresentedtwoefficientalgorithmstocorrecterrors in the solution sof frequency
domain analysis of structural systems with on eormultipledegreesoffreedom.

After describingthemathematical formulation for dynamicanalysisof single degreeoffreedom
systems, the method describedby Veletsosand Ventura tocorrect the stationary response obtained
bythe DFT waspresented. It was demonstrated how this response may differ from the exact
response, depending on factors such as the discretization intervalor the choice of the extended time.
It was show nhow the correction of this response canbemade in term sof the transientunit response
function sorth estation aryunit response functions.

The high efficiency of thisal gorithm was demonstrated bynumerical examples, in which the
response obtainedby DFT with a short extended time iscorrected and comparedto tha tobtained

withan adequate extended time. It is comparedalsotothe responses obtained byothermethods,
including the Duhamel integral.
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