

Análise Experimental de Vigas de Concreto Armado com Furos na Vertical

Ricardo José Carvalho Silva¹; Antonio Edson de Araújo Pontes²; Rodrigo Farias da Silva³

RESUMO

Em edificações, é muito comum montar-se os eletrodutos atravessando verticalmente as vigas, paralelo à sua altura. A NBR 6118 (2007) estabelece um espaçamento mínimo entre um furo vertical e outro, muito embora isso seja frequentemente desrespeitado nas construções. A norma também determina o uso de estribos no intervalo entre dois furos, prevendo assim um aumento de tensões na zona de descontinuidade, porém essa pesquisa constatou que o furo vertical em vigas não interfere somente na circunvizinhança do furo e isso a NBR 6118 (2007) simplesmente despreza. Esse trabalho teve por objetivo investigar se a passagem vertical de eletrodutos em vigas de concreto armado interfere na resistência final da viga. Foram ensajadas 5 vigas de concreto armado. Uma não tinha passagem de eletrodutos e as outras variavam somente a posição dos eletrodutos. Em seguida, utilizando o programa Abaqus, analisaram-se as 5 vigas para investigar como os furos alteraram as tensões principais das vigas e verificar se os furos prejudicaram a resistência final da viga. E finalmente, constatou-se que a presença dos furos que atravessam as vigas verticalmente interfere na resistência ao cisalhamento das vigas, inclusive quando os eletrodutos atravessam em regiões que se imaginava que não ia influenciar.

Palavras-chave: Concreto armado. Viga com furos na vertical. Bielas e tirantes.

http://dx.doi.org/19549/rsee.v13i1/3751

Professor Doutor, Curso de Engenharia Civil, Centro de Ciências Exatas e Tecnológicas – CCET, Universidade Estadual Vale do Acaraú - UVA. Campus Cidao. Av. Dr. Guarany, 317, Bairro Derby, Sobral – CE – Brasil, CEP: 62.042-030. E-mail: ricardo.carvalho222@gmail.com

Aluno de Graduação, Curso de Engenharia Civil, Centro de Ciências Exatas e Tecnológicas – CCET, Universidade Estadual Vale do Acaraú - UVA. Campus Cidao. Av. Dr. Guarany, 317, Bairro Derby, Sobral – CE – Brasil, CEP: 62.042-030. E-mail: edson.pontes99@hotmail.com

³ Aluno de Graduação, Bolsista de Iniciação Científica PIBIC/CNPq, Curso de Engenharia Civil, Centro de Ciências Exatas e Tecnológicas – CCET, Universidade Estadual Vale do Acaraú - UVA. Campus Cidao. Av. Dr. Guarany, 317, Bairro Derby, Sobral – CE – Brasil, CEP: 62.042-030. E-mail: rodrigofarias gba@hotmail.com

1 Introdução

Ao visitar uma obra com vigas de concreto armado, é muito comum ver vigas com vários eletrodutos atravessando-as na vertical, paralelamente à sua altura. Muitas vezes, executados em desacordo com as recomendações da norma brasileira NBR 6118 (2007). Além disso, esse assunto é muito pouco pesquisado e divulgado. Tudo isso motivou o surgimento de uma pesquisa onde se avaliassem, experimentalmente e computacionalmente, vigas com passagem de eletrodutos na vertical e se comparasse com o que a NBR 6118 (2007) recomenda.

1.1 Objetivo

O objetivo principal dessa pesquisa foi verificar se os furos verticais, para passagem de eletrodutos, influenciam a resistência das vigas de concreto armado.

1.2 Relevância

A própria ausência de pesquisas e publicações nessa área tornam essa pesquisa de significativa relevância.

2 Recomendações Normativas

A passagem de um vazio atravessando verticalmente uma viga, como um eletroduto por exemplo, desde que esse vazio seja pequeno em relação ao elemento estrutural, o texto da NBR 6118 (2007) denomina de furo. Caso esse vazio não seja tão pequeno assim em relação às dimensões do elemento estrutural, a NBR 6118 (2007) denomina de abertura. Um conjunto de furos muito próximos deve ser tratado como abertura. Para que os furos e aberturas na direção da altura da viga não tragam prejuízos à peça estrutural, a NBR 6118 (2007) define limites sobre sua execução. Para estruturas cujo projeto exige aberturas, estas devem ser calculadas e detalhadas considerando as tensões ao seu contorno, considerando armaduras complementares, além das armaduras convencionais dimensionadas.

A NBR 6118 (2007) recomenda que:

(a) Os furos ou aberturas em vigas, para passagem de tubulação vertical nas edificações, não devem existir diâmetros superiores a 1/3 da largura "b", como apresentado nas figuras 1 e 2. Deve ainda ser verificada a redução da capacidade de resistência ao cisalhamento e à flexão na região da abertura.

Figura 1 – Vista tridimensional dos limites de abertura vertical em vigas (NBR 6118, 2007)

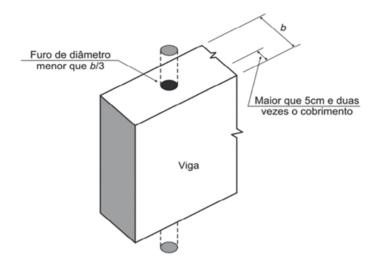
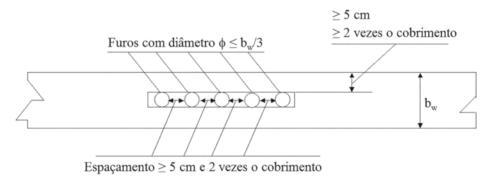
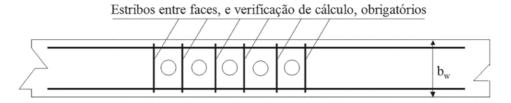




Figura 2 – Vista superior dos limites de abertura vertical em vigas (CARNAÚBA, 2006)

- (b) A distância mínima permitida de um furo à face mais próxima da viga deve ser igual a 5 cm e duas vezes o cobrimento previsto para essa face, como mostrado nas figuras 1 e 2. A seção remanescente nessa região, descontada a área ocupada pelo furo, deve ser capaz de resistir aos esforços previstos no cálculo, além de permitir boa concretagem.
- (c) Caso haja um conjunto de furos, estes devem ser alinhados e a distância entre suas faces devem ser no mínimo igual a 5 cm ou duas vezes o diâmetro do furo e cada intervalo devo conter pelo menos um estribo, como apresentado na figura 3.

Figura 3 - Vista superior dos intervalos entre um conjunto de furos em vigas (CARNAÚBA, 2006)

Além disso, NBR 6118 (2007), ainda permite que esses limites sejam ajustados quando as vigas forem dimensionadas à torção, para que se tenha um comportamento adequado.

3 Programa Experimental

Esse item subdivide-se em quatro partes: inicialmente, são apresentadas as características do concreto e do aço utilizados, depois, são descritos os dados das vigas ensaiadas, também são apresentadas as execuções dos ensaios e, finalmente, é explicado como foi feito o controle de cargas e fissuras durante os ensaios.

3.1 Caracterização dos Materiais

Todas as vigas foram concretadas no mesmo dia, utilizando a mesma dosagem de concreto. O concreto foi produzido bem próximo às vigas, o que facilitou seu transporte, que foi feito através de pá e colher de pedreiro, despejando diretamente dentro das fôrmas. O adensamento do concreto foi feito de forma manual, com o auxílio de uma haste metálica, de modo cuidadoso para evitar a formação de ninhos de concretagem e segregação do material, principalmente na região onde se localizavam os eletrodutos. Depois de concretadas, as vigas foram submetidas à cura úmida, cobertas com um uma lona plástica e molhadas em intervalos regulares por um período de sete dias, a fim de evitar a perda de água para o ambiente e garantir o processo de hidratação do cimento.

Com o concreto utilizado nas 5 vigas, foram moldados 5 corpos de prova com as dimensões de 10 cm x 20 cm (diâmetro x altura). Um dia após os ensaios das vigas, 3 corpos de prova foram ensaiados à Compressão Axial, conforme a NBR5739 (2007), e 2 corpos de prova foram ensaiados à Tração por Compressão Diametral, conforme a NBR7222 (2010).

Os ensaios mostraram que o concreto estava com uma resistência média à compressão de f_c = 30,57 MPa (Figura 4) e uma resistência média à tração de f_t = 2,51 MPa (Figura 5).

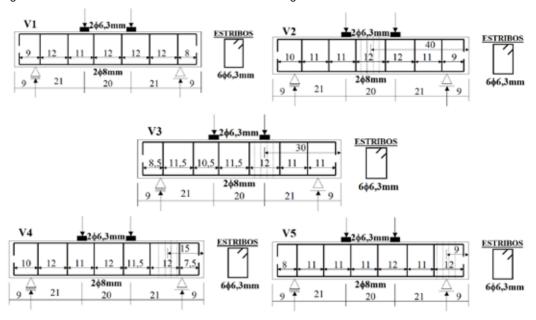
Figura 4: Corpo de prova de concreto para ensaio de compressão axial

	Corpo de Prova	Carga de Ruptura (kN)	Seção Transv. (cm²)	Resist. f _{c, CP} (MPa)	Resist. Média f _c (MPa)
	CP1	220		28,03	
	CP2	234	78,5	29,81	30,57
	CP3	266		33,89	

Figura 5: Corpo de prova de concreto para ensaio de tração por compressão diametral

	Corpo de Prova	Carga de Ruptura F (kN)	Diâm. d (cm)	Compr. L (cm)	Resist. $f_{t, CP} = 2F/(\pi d L)$ (MPa)	Resist. f _t (MPa)
	CP1	74	10	20	2,36	0.54
	CP2	84	10	20	2,68	2,51

Em todas as 5 vigas foram utilizadas somente aço CA-50 com as bitolas de 6,3mm e 8,0mm. A tabela 1 mostra as características dos aços, fornecidas pelo fabricante.


Tabela 1 - Características do Aço CA-50 (Gerdau, 2010)

Diâmetro		Ensaio de Tração (valores mínimos)						
Nominal (mm)	Massa Nominal (kg/m)	Tolerância Massa Linear (%)	Massa característica de Linear escoamento - f _y		Alongamento em 10Ø			
6,3 8,0	0,245 0,395	± 7	500	1,08 . f _y	8 %			

3.2. Descrição das vigas

As vigas continham como principal variável a posição dos furos verticais. A figura 6, a seguir, apresenta os detalhamentos dos furos e das armaduras em cada uma das vigas. As vigas ensaiadas possuíam 2 barras longitudinais localizadas em baixo (2 \square 8 mm), 2 barras longitudinais localizadas em cima (2 \square 6,3 mm) e, também, 6 estribos (6 \square 6,3 mm) distribuídos. Na viga V1 não havia passagem de eletroduto, na V2 o eixo dos três eletrodutos rígidos de 1" localizava-se a 40 cm das extremidades (direita e esquerda), na viga V3 o eixo localizava-se a 30 cm da extremidade direita, na viga V4 o eixo localizava-se a 15 cm e na viga V5 localizava-se a 9cm. Após os ensaios, as vigas foram descascadas para se medir os espaçamentos reais dos estribos e, por esse motivo, as vigas ficaram com espaçamentos um pouco diferente.

Figura 6: Detalhamento das armaduras e dos furos das vigas

A tabela 2 apresenta os dados geométricos das vigas ensaiadas.

Tabela 2: Dados geométricos das vigas

b h	d	Cobr.	0	Distância do feixe de 3 eletrodutos de 1" até			
Viga	(mm)	(mm)	(mm)	(mm)	ρ _s (%)	a extremidade mais próxima (mm)	o apoio mais próximo (mm)
V1	150	100	129,7	10	0,67	-	-
V2	150	100	129,7	10	0,67	400	310
V3	150	100	129,7	10	0,67	300	210
V4	150	100	129,7	10	0,67	150	60
V5	150	100	129,7	10	0,67	90	0

Sendo:

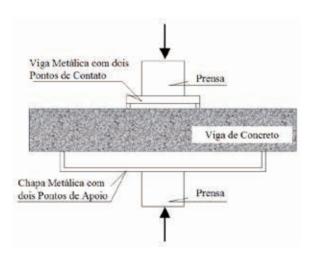
b = largura da base da viga;

h = altura da viga;

d = altura útil da viga;

Cobr. = cobrimento da viga;

 ρ_s = taxa de armadura longitudinal.


3.3 Execução dos ensaios

Foi utilizado a prensa (Figura 7) do Laboratório de Estruturas e Materiais da Universidade para a montagem do ensaio de Stuttgart das 5 vigas. O ensaio de Stuttgart é um ensaio de flexão em vigas com quatro pontos. Dois pontos de aplicação de carga na parte superior da viga e dois pontos de apoio na parte inferior, dividindo a viga em três trechos. No trecho central há flexão pura e nos outros dois trechos há flexão simples.

A prensa hidráulica usada era manual, de capacidade 100 ± 20 toneladas (1000 ± 200 kN), da marca Contenco, de referência I-3001-B, com dois manômetros para leitura de 10" de diâmetro, um na escala de 0-120.000kgf (0-1200 kN), de divisão de 200kgf (2 kN) e outro na escala de 200kgf (200kgf (200kN), de divisão de 200kgf (200kN). O curso máximo do pistão era de 200kgf (200kN), de divisão de 200kgf (200kN). A Figura 8 mostra a prensa utilizada para a realização do ensaio de Stuttgart.

Figura 7: Ensaio de Stuttgart em prensa hidráulica

No ensaio de cada viga, optou-se por aplicação de passos de carga de10 kN com intervalos para marcação das fissuras. As cargas foram aplicadas com baixa velocidade até a viga chegar à ruptura.

3.4. Controle de Cargas e Fissuras

O controle das fissuras gerou um mapa do desenvolvimento das fissuras para cada viga e, assim, facilitou a visualização e interpretação do modo de ruptura e, também, o entendimento da formação das bielas comprimidas.

Inicialmente, aplicou-se lentamente 10 kN na viga. Manteve-se esse carregamento enquanto procuravam-se as fissuras na viga. Com o uso de um pincel atômico, as trajetórias das fissuras foram destacadas na viga e correlacionadas com os valores dos carregamentos aplicados. Em seguida, aplicava-se novamente mais 10 kN. Mantinha-se a carga. Procuravam-se fissuras. Destacavam-se as fissuras. E assim por diante até a viga chegar à ruptura. Após as vigas rompidas e com suas fissuras devidamente marcadas, foi gerado um mapa do desenvolvimento das fissuras para cada viga (Figuras 8, 9 e 10).

Figura 8: Desenvolvimento das fissuras das vigas V1 e V2

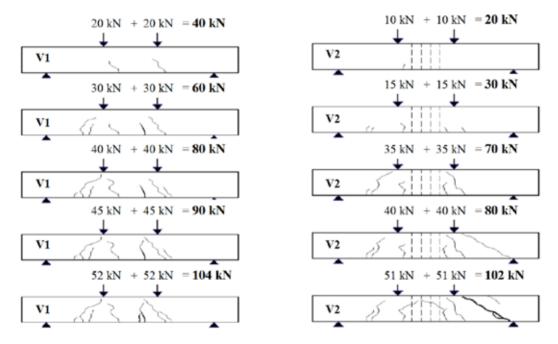


Figura 9: Desenvolvimento das fissuras das vigas V3 e V4

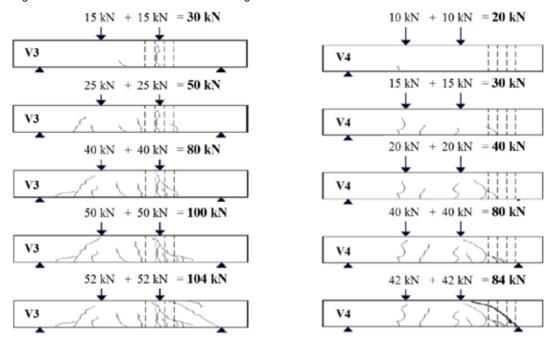
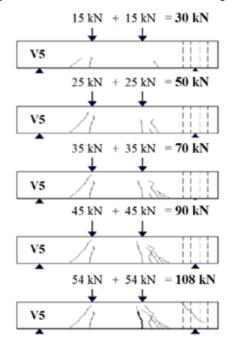



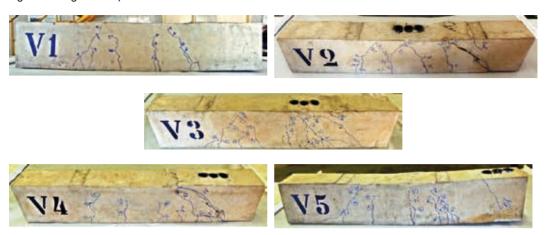
Figura 10: Desenvolvimento das fissuras da viga V5

4 Resultados e Discussões

A tabela 3 apresenta os resultados experimentais das 5 vigas. A viga V1 rompeu por flexão, com deformação plástica excessiva das armaduras longitudinais, com 104 kN. A viga V2 rompeu por cisalhamento, com deformação plástica excessiva dos estribos, com 102 kN. A viga V3 também rompeu por cisalhamento, com deformação plástica excessiva dos estribos, com 104 kN. A viga V4 também rompeu por cisalhamento, com deformação plástica excessiva dos estribos, com uma carga inferior as outras, 84 kN. A viga V5 se comportou praticamente igual a V1. Ela rompeu por flexão, com deformação plástica excessiva das armaduras longitudinais, com 108 kN.

A figura 11 mostra as fissuras das 5 cinco vigas após a ruptura. Observa-se que a V2 apesar de ser vazada no vão onde não havia cisalhamento, surpreendentemente, rompeu por cisalhamento por tração diagonal na região onde havia cisalhamento. Outro fato intrigante é que todas as vigas onde os furos passavam entre os apoios (V2, V3 e V4) romperam por cisalhamento por tração diagonal, como se os furos na vertical aumentassem os esforços de tração nos estribos. Também se observou que a viga V4, onde os furos atravessam a biela comprimida, entre a aplicação da carga e o apoio, foi a que rompeu por cisalhamento por tração diagonal com menor carga. Como se os furos na vertical aumentassem os esforços de tração nos estribos mais ainda que nas outras vigas. Em outras palavras, o furo nessa região foi o mais prejudicial de todos.

Tabela 3: Resultados experimentais das vigas


Viga	V _u (kN)	$V_u/V_{u, V1}$	Modo de Ruptura
V1	104	1,00	Flexão (Deformação plástica excessiva da armadura longitudinal)
V2	102	0,98	Cisalhamento – Tração Diagonal (Deformação plástica excessiva dos estribos)
V3	104	1,00	Cisalhamento – Tração Diagonal (Deformação plástica excessiva dos estribos)
V4	84	0,81	Cisalhamento – Tração Diagonal (Deformação plástica excessiva dos estribos)
V5	108	1,04	Flexão (Deformação plástica excessiva da armadura longitudinal)

Sendo:

V. = Carga última da viga;

V_{11 V4} = Carga última da viga V1 (Viga de referência).

Figura 11: Vigas na ruptura

As 5 vigas foram analisadas pelo método dos elementos finitos através do Programa Computacional Abaqus (figuras 12 a 16). Como a análise era linear elástica, optouse por aplicar em todas as vigas uma carga de 20 kN, menor que a carga de 1ª fissura. O programa mostrou que as vigas com furos na vertical, no trecho bi-apoiado, tiveram suas tensões principais de tração majoradas na região onde as vigas romperam por tração diagonal, justificando assim a ruptura das vigas V2, V3 e V4 por cisalhamento. A viga V5 praticamente se comportou igual a viga V1(sem furo) porque a parte do furo que ficava dentro do trecho bi-apoiado era muito pequena.

Figura 12: Tensões máximas de tração na viga V1

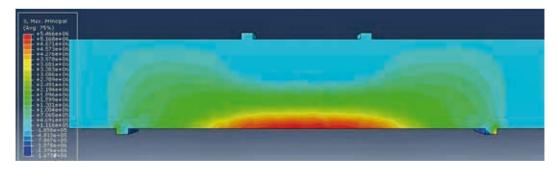


Figura 13: Tensões máximas de tração na viga V2

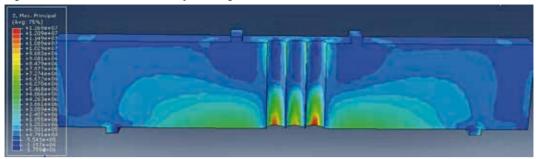


Figura 14: Tensões máximas de tração na viga V3

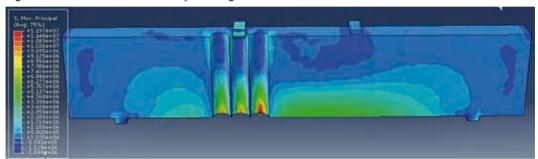


Figura 15: Tensões máximas de tração na viga V4

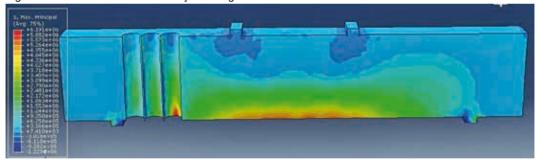
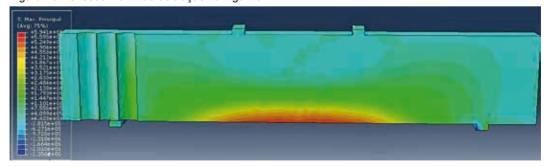



Figura 16: Tensões máximas de tração na viga V5

Dessa maneira, para se medir o aumento das tensões principais de tração, foi escolhido um ponto, nas vigas ensaiadas. Esse ponto localizava-se a "a/2" do apoio e a meia altura (h/2). Sendo "a" a distância entre a aplicação da carga e o apoio. Para esse ponto, resolveu-se verificar a variação das tensões principais de tração em relação à distância do furo. Observou-se que, quanto mais esse furo se aproximava do apoio, mais as tensões principais de tração cresciam, influenciando assim, uma possível ruptura por tração diagonal que normalmente é desprezada no cálculo dos estribos. A figura 17 mostra esse fenômeno que, para vigas com mesma geometria, pode ser estimado o aumento da tração diagonal utilizando-se a equação encontrada pela linha de tendência do gráfico.

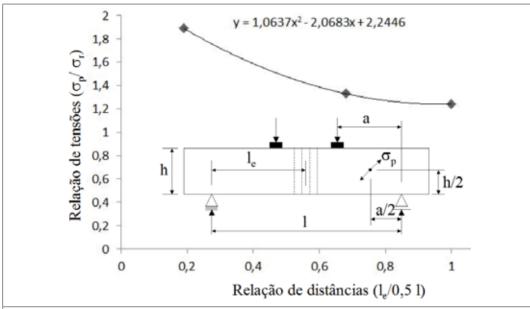


Figura 17 - Relação de distância dos furos versus relação de tensões principais de tração

Sendo:

σ = Tensão principal de tração no ponto analisado para a viga com furo na vertical;

σ_r = Tensão principal de tração no ponto analisado para a viga de referência (mesma viga sem furo);

= Distância do eixo dos furos ao apoio mais próximo;

I = Distância de apoio a apoio.

A partir da linha de tendência traçada no gráfico, obtém-se a equação (1), denominada aqui de fator de majoração para vigas que apresentem furos na vertical ($\gamma_{\rm furo}$). Com esse fator de majoração ($\gamma_{\rm furo}$) pode-se estimar um esforço cortante maior em função do aumento da tração diagonal causada pelo furo (equação 2).

$$\gamma_{\text{furo}} = 1,06 \left(\frac{l_e}{0,5.1}\right)^2 - 2,07 \left(\frac{l_e}{0,5.1}\right) + 2,24$$
 (1)

$$V_{sd \text{ corrigido}} = \gamma_{furo} V_{sd} \le V_{Rd3} = V_c + V_{sw}$$
 (2)

Sendo:

l = distância do eixo dos furos para o apoio;

l = vão de apoio a apoio;

 V_{sd} = Força cortante solicitante de cálculo na seção (NBR 6118, 2007);

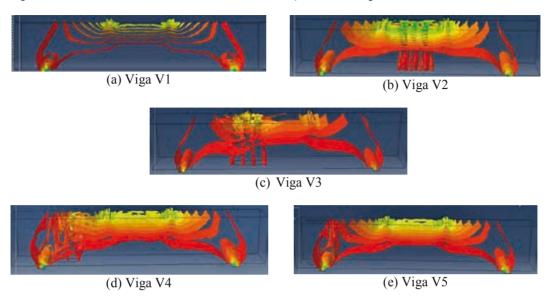
 V_{Rd3} = Força cortante resistente de cálculo, relativa à ruína por tração diagonal (NBR 6118, 2007);

 V_c = Parcela de força cortante absorvida por mecanismos complementares ao de treliça (NBR 6118, 2007);

 V_{sw} = Parcela resistida pela armadura transversal (NBR 6118, 2007).

Para vigas com geometria diferentes, pode-se fazer a mesma correção com a equação 3. Nesse caso, o ponto analisado pode ser adotado pelo calculista, desde que seja próximo ao apoio, onde haja maior esforço cortante e a meia altura.

$$\gamma_{\text{furo}} = \left(\frac{\sigma_{\text{p}}}{\sigma_{\text{r}}}\right) \tag{3}$$


Sendo:

 $\sigma_{_p}$ = Tensão principal de tração no ponto analisado para a viga com furo na vertical, analisado em um programa de elementos finitos;

 $\sigma_{\rm r}$ = Tensão principal de tração no ponto analisado para a viga de referência (mesma viga sem furo), analisado em um programa de elementos finitos.

A figura 18 apresenta o delineamento das tensões principais de compressão das 5 vigas, dando uma ideia de como se formaram as bielas comprimidas. Nota-se que nas vigas V3 e V4 os furos influenciam uma das bielas tornando-a mais aberta como biela tipo leque, conforme definem Schafer & Shclaich (1988) e Shclaich, Schafer & Jennewein (1987). Também foi constatado que as bielas apresentam um formato arqueado. Segundo Silva (2013) e Pontes (2013) esse formato em arco alivia o esforço normal nas armaduras longitudinais.

Figura 18 - Delineamento das tensões máximas de compressão nas vigas

A NBR 6118 (2007) traz recomendação referente ao espaçamento entre os furos, apesar disso ser comumente desrespeitado nas obras, e também referente ao uso de estribos entre os furos, mas se omite em regiões distantes do furo, como ocorreu na viga V2. Obviamente que esse vazio na vertical torna a viga mais flexível e em uma viga mais flexível, há o maior deslizamento entre as lâminas horizontais da viga, fundamento básico da teoria do cisalhamento.

5 Formulações Propostas

Conforme discutido no item anterior, para vigas com furos com a geometria parecida com as vigas analisadas, ou seja, para a relação l/d = 60/13,1 = 4,58 e a relação ϕ_{furo}/b = 2,54/10 = 0,25, pode-se majorar o esforço cortante solicitante adotando a equação 1.

Para vigas com furos com a geometria diferente das vigas analisadas, pode-se majorar o esforço cortante solicitante adotando a equação 3. Sendo as tensões principais de tração da viga com furo e da mesma viga simulada sem furo $(\sigma_p e \sigma_r)$ encontradas utilizando o mesmo programa computacional.

6 Conclusões

Pode-se concluir que os furos verticais influenciam na resistência ao cisalhamento das vigas. Esses furos verticais, mesmo os furos localizados em uma região de flexão pura, causam o aumento da tração diagonal na região de flexão simples.

A passagem dos furos quanto mais próxima do apoio, atravessando a biela comprimida, mais é prejudicial à estrutura.

A NBR6118 (2007) recomenda o uso de estribos entre os furos. Apesar desses estribos serem necessário na região de descontinuidade, não são suficientes para combater o aumento da tração diagonal nas proximidades do apoio.

O fator de majoração ($\gamma_{\rm furo}$), proposto nessa publicação, parece ser o mais indicado para estimar o aumento do esforço nos estribos, quando ocorre o aumento da tração diagonal por causa da presença dos furos verticais. Pode-se usar o $\gamma_{\rm furo}$ da equação 1 para vigas com geometria parecida com as do estudo ou o $\gamma_{\rm furo}$ da equação 3 para vigas com geometria diferente.

Os furos verticais, quando atravessam a biela, criam um campo de tensão de compressão mais aberto que na biela sem os furos. A teoria de bielas e tirantes denomina esse tipo de biela como "biela tipo leque".

7 Agradecimentos

Os autores agradecem à Construtora Cameron, ao CNPq, a FUNCAP e a Universidade Estadual Vale do Acaraú – UVA, pelo apoio financeiro e pela estrutura necessários a essa pesquisa.

8 Referências

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 6118: Projeto de estruturas de concreto - Procedimento. ABNT: Rio de Janeiro, 2007.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). NBR 5739: Concreto - Ensaios de compressão de corpos-de-prova cilíndricos. Rio de janeiro: ABNT, 2007.

CARNAÚBA, Marcos. Concreto armado. Notas de aula, UFAL, Alagoas, 2006.

GERDAU. Aço para construção civil. Catálogo da Gerdau: Porto Alegre, 2010.

PONTES, Antônio Edson de Araújo. Estudo experimental de vigas de concreto armado com passagem de eletrodutos na vertical. 2013. 85 f. Monografia (graduação em Engenharia Civil) – Curso de Engenharia Civil, Universidade Estadual Vale do Acaraú, Sobral, 2013.

SCHAFER, K. SHCLAICH, J. Consistent Design of Structural Concrete Using Strut and Tie Models. In: Colóquio sobre comportamento e projeto de estruturas, v. 5, *Anais...* PUC/RJ. Rio de Janeiro, 1988.

SCHLAICH, J.; SCHAFER, K.; JENNEWEIN, M. Toward a consistent design of structural concrete. *Journal of the Prestressed Concrete Institute*, v. 32, n. 3, p. 74 150, maio/jun. 1987.

SILVA, Rodrigo Farias da. *Análise de vigas de concreto armado com furos na vertical e na horizontal via método de bielas e tirantes*. 2013. 162 f. Monografia (Graduação em Engenharia Civil) – Universidade Estadual Vale do Acaraú, Sobral, 2013.

Falta o título em inglês

ABSTRACT

In buildings , it is very common to assemble conduit vertically through the beams. The NBR 6118 (2007) establishes a minimum spacing between vertical hole and another one , although this is often disregarded in buildings. The code also recommends to use shear reinforcement between two holes, thus predicting an increase of tensions in the discontinuity zone, but this research found that the vertical hole in beams not interferes arround hole only and NBR 6118 (2007) ignores it. The aim of this work was to investigate if vertical passage of conduits in reinforced concrete beams interferes in the final resistance of the beam. Five reinforced concrete beams was tested. One had not passage of conduits and four had passage of conduits in differents positions. Then , using the Abaqus software, it was analyzed the 5 beams to understand how the holes change the principal stresses in beams and if the holes damaged the ultimate strength of the beam . Finally, it was observed that the vertical holes through the beams interfere in shear strength of beams, even when the conduits are in regions imagined that would not influence.

Keywords: Reinforced concrete. Beam with vertical holes. Strut and tie.

1 Introduction

When visiting a construction with reinforced concrete beams, it is very ordinary to see beams with some conduits through them vertically. Often disregarding the recommendations of the Brazilian code NBR 6118 (2007). Furthermore, this subject is poorly researched and publicized. Everything to led the appearance of a research where it was evaluated, experimentally and computationally, beams with vertical conduits in order to compare with what the NBR 6118 (2007) recommends.

1.1 Objective

The main objective of this research was to investigate if the vertical holes, for passage of conduits, in beams influence the resistance of reinforced concrete beams.

1.2 Relevance

The absence of research and publications in this issue makes this research of significant relevance.

2 Code Prescriptions

In order to vertical holes in beam does not damage the structure, the NBR 6118 (2007) sets limits on its execution. For structures whose design requires holes, they shall be calculated and detailed considering the stresses arround the holes, considering additional reinforcement.

3 Experimental Program

3.1 Characterization of Materiais

With the concrete used in the 5 beams, 5 samples of 10 cm x 20 cm (diameter x height) were cast. One day after the tests of beams, three specimens were tested at Axial compression, as NBR5739 (2007), and 2 specimens were tested by Brazilian Test, as NBR7222 (2010).

The tests showed that the concrete had an average compressive strength fc = 30.57 MPa (Figure 4) and an average tensile strength ft = 2.51 MPa (Figure 5).

In all the five beams it has been used only reinforcement CA-50 with diameter of 6.3 mm and 8.0 mm. Table 1 shows the characteristics of the reinforcement provided by the manufacturer.

3.2 Beams Description

The beams contained as main variable the position of the vertical holes. Figure 6, below, shows the detailing of the holes and reinforcement in each beam. The tested beams had two longitudinal reinforcements located at the bottom (2 \square 8 mm), two longitudinal reinforcements located above (2 \square 6,3 mm), and also shear reinforcement (6 \square 6,3 mm) distributed. In beam V1 had no passage conduit , in beam V2 there were three rigid conduits 1" located 40 cm from the ends (right and left), beam V3 was located 30 cm from the right end, in beam V4 was located 15 cm and beam V5 was located at 9cm. After the tests, the beams were cut to measure the real spacing of the stirrups and, therefore, the beams were left with slightly different spacings. In testing each beam, it was decided to apply load steps of 10 kN with intervals to mark the cracks. The loads were applied at low speed until the beam rupture.

3.3 Tests Execution

It was used the compression test machine (Figure 7) in the Structures and Materials Laboratory of the University to mounting of Stuttgart tests. The test of Stuttgart is a bending test on beam with four points. Two load application points at the top of the beam and two support points on the bottom divided the beam into three spans. In the

central span there is pure bending and in the other two spans there are simple bending. A manual hydraulic compression test machine which was used had the capacity 100 ± 20 tf ($1000 \text{ kN} \pm 200 \text{kN}$) of CONTENCO mark, reference I-3001-B, two pressure gauges for reading of 10 "diameter, one in the range 0-120,000 kgf (0-1200 kN) splitting 200 kgf (2 kN) and a range of 0-24,000kgf (0-240 kN) splitting 40 kgf (2 kg). The maximum piston stroke was 35 mm and gross weight was 150 kgf (2 kg). Figure 2 kg0 shows the compression test machine used for the test of Stuttgart.

3.4 Loads and Cracks Control

The control of cracks generated a map of the cracks development for each beam and, thus, it improved visualization and interpretation of the failure mode and, also, to understand the formation of the compressed struts.

Initially, it was applied slowly 10 kN in beam. It Remained that loading while looking for the cracks in the beam. Using a magic marker, the trajectories of the beam cracks were marked and correlated with the values of the applied loads. Then, it was applied again 10 kN. It remained the load. It looked for cracks. It marked the cracks. And it continued until the failure. And finally, it was done a a map of the cracks development for each beam (Figures 8, 9 and 10).

4 Results and Discussion

Table 3 shows the experimental results of five beams. The beam V1 failured by flexure with excessive plastic deformation of the longitudinal reinforcement with 104 kN. The beam V2 failured by shear with excessive plastic deformation of the stirrups, with 102 kN. The V3 also failured by shear with excessive plastic deformation of the stirrups, with 104 kN. The V4 also failured by shear with excessive plastic deformation of the stirrups, with a lower load other, 84 kN. The V5 behaved almost equal to V1. She failured by flexure with excessive plastic deformation of the longitudinal reinforcement with 108 kN.

Figure 11 shows the cracks of five beams 5 after the rupture. It is observed that although the V2 has holes in a place where there was no shear force, surprisingly this beam failured by shear with diagonal tensile in a place where there was shear force. Another intriguing fact is that all beams where the holes passed between supports (V2, V3 and V4) broke shear by diagonal tensile, as if the holes vertically to increase the tensile stresses in the stirrups. It was also observed that the beam V4, where the holes go through the compressed strut between load application and support, which was failured by shear (diagonal tensile) with less load. As the vertical holes would increase the tensile stresses stirrups more than in other beams. In other words, the hole in this region is more damaging than the others.

The 5 beams were analyzed by finite element method through the Abaqus software (Figures 12-16). It was applied a load of 20 kN, in each beam, smaller than the first crack load. The software showed that the beams with holes vertically had their principal tensile stresses increased for the region where the beams failured by diagonal tensile, thus justifying the shear failure of V2, V3 and V4 beams. The V5 behaved almost equal to V1 (without hole) because of the hole that was within the bi-supported was very small.

To measure the increase of the principal tensile stresses, a point was chosen in the tested beams. This point was located in the "a / 2" from the support and the half height (h / 2). "a" being the distance between load application and support. For this point, it was decided to assess the variation of the principal tensile stresses in relation to the distance from the hole. It was observed that how more close was hole to support, more the main tensile grew, thus influencing a possible rupture by diagonal tensile that is usually disregarded in the calculation of the stirrups. Figure 17 shows this phenomenon, which for beams with the same geometry, it can be estimated increasing in the diagonal tensile by the equations (1) and (2).

For different geometry, it can be estimated using equations (3) and (2).

Figure 18 shows the shape of the main compressive stress of 5 beams, giving an idea of how struts are formed. It can be observed that holes in the V3 and V4 influence of the struts became more open than others, as a "strut type fan", as defined Schafer & Shclaich (1988) and Shclaich, Schafer & Jennewein (1987). It was also noted that the struts prensent an arched shape. According to SILVA (2013) and Pontes (2013) this shape relieves normal stress in the longitudinal reinforcement.

The NBR 6118 (2007) provides recommendation on the spacing between the holes, although this is commonly disregarded in the construtions, and also concerning the use of stirrups between holes, but it is omitted in distant regions of the hole, as occurred in beam V2. Obviously, these holes make the beam more flexible then a beam without holes and a more flexible beam, there is the largest slip between the horizontal blades of the beam, the basic foundation of the theory of shear.

5 Proposed Formulations

As discussed in the previous section, for beams with holes like the beams analyzed, geometry ie, for l / d = 60/13, 1 = 4.58 and $\phi_{\rm furo}$ / b = 2.54/10 = 0.25, it is possible to top up the shear force requesting taking equation (1).

For beams with holes analyzed beams of different geometry, can raising its shear force adopting equation (3). Being σ_p the main tensile stress of a beam with holes and σ_r the main tensile stress of the immaginary beam (same beam without holes), both calculate in the same software.

6 Conclusions

It can be concluded that the vertical holes influence the shear strength of the beams. These vertical holes, even the holes being in a region of pure flexure, it increases the diagonal tensile in a region of simple flexure.

The holes, crossing compressive strut, are more harmful how closer to support.

The NBR6118 (2007) recommends the use of stirrups between holes. Despite these stirrups to be necessary in discontinuity region, it is not enough to combat the increase of diagonal tensile close support.

The factor of increase (γ_{furo}) proposed in this publication, seems to be more appropriate to estimate the increase of force in stirrups, when the diagonal tensile increases, because of vertical holes. For beams similar to the study , the equation (1) can be used. For differents geometry beams, the equation (3) can be used.

The vertical holes, when passing through the struts, create a field of compression stress more open than the struts without holes. The theory strut and tie calls such as "strut type fan".