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Abstract 

A simplified methodology is proposed for railway bridge vibration analysis under 

train loading. Dynamic models of both train and bridge were assumed to be initially 

uncoupled, yet bound by contact forces. These forces were evaluated from the 

dynamic response of the vehicle subjected to support excitation caused by rail and 

wheel geometric irregularities. Such forces were statically condensed in the vehicle 

centre of gravity and applied to a 3D-beam finite-element model of the bridge. The 

influence of the rigid-deck hypothesis on the dynamic response is assessed via an 

iterative procedure to redefine updated “equivalent rail irregularities” as the sum of 

the deck displacements and the “actual” rail irregularities. The new interaction 

forces are re-applied to the bridge model to determine new displacements, repeating 

the procedure until the results converge. 

Keywords: Dynamic Analysis, Railway Bridges, Geometric Irregularities, Contact 

Forces, Iterative Procedure, Frequency-Domain Spectrum 

1  Introduction 

This work addresses the vibration analysis of railway bridges produced by a 

typical passenger train, or EUT (Electric Unit Train), running along them. To this 

goal, a simplified dynamic-analysis methodology is presented, which assumes, in an 

initial step, that the vehicle and the bridge structural models can be de-coupled to 

ease the determination of the contact forces. Yet, this approximate assumption will 
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be corrected at a later step by means of an iterative procedure that will be described 

herewith. It is meant that the methodology should be sufficiently accessible to 

structural engineers making use of commercial finite-element codes, widely 

available. 

To obtain the dynamic contact forces, a fifteen-degree-of-freedom model of 

the vehicle is used, according to [1], namely bounce (vertical displacement), sway 

(transversal displacement), roll (rotation about the longitudinal axis), pitch (rotation 

about the transversal axis) and yaw (rotation about the vertical axis), for the wagon 

suspended mass and the two bogies. The sway and yaw degrees of freedom are of 

particular interest to excite flexural modes of the bridge deck in the horizontal plane, 

as well as horizontal reactions applied at the column top ends, of great relevance for 

the meso- and infra-structure analysis. Bounce and pitch, on their turn, are important 

when flexural modes of the bridge deck in the vertical plane are excited. Roll acts 

upon torsion modes of the bridge deck. Bounce, pitch and roll interact to produce 

vertical reactions applied to the top end of columns. 

Geometric irregularities both in the rails and the wheels are the primary 

causes for the time variation of the contact forces. These irregularities will be 

modelled here by functions proposed in the literature, as seen in [2]. 

Both the vehicle and the bridge deck will be modelled by the finite-element 

code ADINA – Automatic Dynamic Incremental Nonlinear Analysis –, available at 

the Computational Mechanics Laboratory of Escola Politécnica, University of São 

Paulo. 

The modal analyses of the vehicle model, with the aforementioned 15 

degrees of freedom, and of the bridge-deck model are carried out, to start with. It 

should be mentioned that two finite-element bridge-deck models were considered at 

this point: a high-hierarchy one, with shell elements and a low-hierarchy 3D-beam 

elements. This latter one is meant to be used in the forced dynamical analysis, for 

the sake of simplicity, once the contact forces are determined. Yet, the comparison 

between the results of the modal analyses for both the high- and the low-hierarchy 

models is useful to validate the latter one, for the purpose of the simplified 

methodology. Next, under the assumption of rigid rails and wheels, although being 

imperfect, the vehicle dynamic response under the equivalent support excitation is 

carried out, which supplies the contact forces in all wheels. The contact forces are 
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then statically condensed at the vehicle centre of mass, thus leading to a movable 

“equivalent” five-degree-of-freedom loading system (bounce force, sway force, roll 

moment, pitch moment and yaw moment) that travels with a constant speed along 

the 3D-beam-element model. 

The dynamic analysis of the 3D-beam-element model subjected to the 

travelling five-degree-of-freedom loading system follows next, leading to 

displacements and internal forces time histories. 

An iterative procedure can now be devised, by re-defining the “equivalent” 

rail imperfections as the sum of the time functions of the original rail imperfections 

at a certain position and the deck displacements at the same position, at the same 

time. A new dynamic analysis of the vehicle would be made, leading to new contact 

forces that would be statically condensed at the vehicle centre of mass, which would 

be applied to the bridge deck model, and so on. 

The dynamic response would hopefully converge after a few iterations. 

2  Modelling 

2.1 Vehicle model 

As discussed above, the methodology considers a fifteen-degree-of-

freedom model for the car. Since geometrical and mechanical for typical passenger 

wagons used in the Brazilian railways properties were not all available, it was 

considered here the vehicle of [3], whose parameters are shown in Table 1. Figure 1 

illustrates the vehicle model. 
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Table 1: Car mechanical and dynamic parameters (extracted from [3]) 

Unit Value

kg 50990

kg.m² 1,55.10
5

kg.m² 1,96.10
6

kg.m² 1,88.10
6

kg 4360

kg.m² 1,47.10³

kg.m² 3,43.10³

kg.m² 5,07.10³

kN/m 2976

kN/m 20000

kN/m 1060

kN/m 460

kNs/m 15

kNs/m 15

kNs/m 30

kNs/m 30

m 22.5

m 15.6

m 2.5

m 0.98

m 0.36

m 0.07

m 0.98

m 1.12

Distance lz

Distance az

Distance bz

Distance dy

Distance ly

Secondary-suspension vertical damping (cs
v
)

Secondary-suspension lateral damping (cs
h
)

Vehicle total length

Distance between bogies (2lx)

Distance between axles (2dx)

Primary-suspension lateral stiffness (kt
h
)

Secondary-suspension vertical stiffness (ks
v
)

Secondary-suspension lateral stiffness (ks
h
)

Primary-suspension vertical damping (ct
v
)

Primary-suspension lateral damping (ct
h
)

Bogie mass (mt)

Bogie inertia moment of mass in roll  (Ixt)

Bogie inertia moment of mass in pitch  (Iyt)

Bogie inertia moment of mass in yaw  (Izt)

Primary-suspension vertical stiffness (kt
v
)

Parameter

Wagon mass (ms)

Wagon inertia moment of mass in roll (Ixs)

Wagon inertia moment of mass in pitch (Iys)

Wagon inertia moment of mass in yaw (Izs)

 

 

It is assumed that the train convoy is a composition of two EUT’s, with four 

identical vehicles, totalling eight cars. Rigid links are used to connect the nodes 

where mass, damping and stiffness are positioned. The wheel masses are neglected 

and contact is assumed always. Figure 2 illustrates the vehicle model, as built in 

ADINA. 
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a) Longitudinal section 

 

b) Horizontal section 

 

c) Cross section 

Figure 1: Vehicle model 
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Figure 2: Vehicle model, as built in ADINA, showing rigid links (in brown) and 

springs and dampers (in green) 

2.2 Rail and wheel geometric irregularities 

The dynamic effect of the irregularities is to increase the load transferred to 

the bridge deck. It is assumed that rail irregularities, both in the vertical and 

horizontal planes, can be described by harmonic functions (Figure 3). They can 

induce significant vibration both in the vehicle and the bridge deck when its 

wavelength  , crossed at a constant velocity V , will lead to a “forcing frequency” 



V2
 close to a natural frequency of either structural system.  

 

Figure 3: Simple harmonic irregularity 

Phase differences between irregularities in the vertical and horizontal 

planes, as well as between the two rails, can be considered. Majka et al [4] stresses 

that the lateral dynamic response of a bridge is severely influenced by the rail 
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irregularities in the horizontal plane in straight spans, since centrifugal forces are not 

even present there. 

As for the wheel geometric irregularities, localized notches can appear on 

the contact surface, due to the fact that the material of which they are made is less 

hard than the rail material. 

The following functions are therefore used to model the irregularities, 

according to [2]: 

a) Rail longitudinal irregularities: 

        







 



x
Asenxr

2
)(         (Eq. 1) 

where: 

A : irregularity amplitude in m; 

Vtx  : distance travelled by the vehicle in m; 

V : vehicle speed in m/s; 

n

2
 : wavelength in m; 

 : length with irregularities in m; 

n : number of irregularity half-waves ℓ; 

 : phase angle in radians. 

In the present case study, irregularity amplitudes were assumed to be 5mm 

and 2mm, respectively in the vertical and horizontal planes. The phase angle was 

taken to be zero in the vertical plane and π/2 in the horizontal plane. Still with 

respect to the rail irregularities, the case n=5 was considered in both planes. 

b) Wheel irregularities 

The notches are modelled by the function depicted in Figure 4: 

 

Figure 4: Wheel irregularity function 
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 (Eq.2) 

where: 

iA , iB , ia  e ib : are indicated in Figu; 

i : refers to the i-th wheel with notches; 

k : 0, 1, 2... 

The following notation is used in Figure  5: 

A : circumference length in m; 

B : distance of first wheel impact with respect to the bridge entrance in m; 

a : notch depth in m; 

b : notch length in m. 

 

Figure 5: Wheel with a notch 

2.3 Bridge-deck modelling 

This case study refers to the bridge described in [5]. It is a 36m long 

reinforced-concrete bridge, for two tracks, so that the eccentricity of each track with 

respect to the deck longitudinal axis is 2.4m. It was chosen because its box-girder 

cross section allows for an easy 3D-beam model, as wished here. Geometric and 

mechanical properties are supplied in Figure . Figure  shows a high-hierarchy model 

built in ADINA, which was used only for the modal analysis. 
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,1
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A 4.56 m²

Ix 3.52 m
4

Iy 28.88 m
4

It 6.68 m
4

E 2.38x10
10

N/m²

m 11169.84 kg/m

Irx 39273.16 kg.m²

Iry 1134090.97 kg.m²  

Figure 6: Deck cross section and properties 

 

 

Figure 7: Shell-element finite-element model used in modal analysis 

2.4 Reduced-order model for the contact forces and the bridge deck 

As mentioned before, the reduced-order model for the contact forces comes 

out of the static condensation at the vehicle centre of mass, considering the set of all 

wheel-rail contact forces. It was assumed here that the train convoy travels at a 

constant speed V=20m/s. Therefore, the five-degree-of-freedom loading system 

(bounce force, sway force, roll moment, pitch moment and yaw moment) shown in 

Figure 8 also runs at the same speed along the 3D-beam model. 

The structural damping was assumed to be of the Rayleigh type, with a 

modal damping ratio of 3% for the first and fifth natural modes, (natural frequencies 

3.31Hz and16.30 Hz, respectively), both of bending in the vertical plane. 
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Figure 8: Loading of the 3D-beam model, as proposed by the simplified 

methodology 

3 Results and concluding remarks 

Table 2 displays the results of the modal analysis for both the vehicle and 

the bridge deck (with the high-hierarchy model). It should be mentioned that a good 

agreement was obtained between the analyses of the high- and low-hierarchy 

models, as far as the first relevant flexural modes are concerned. The scenario with 

n=5 (number of half-waves in the rail irregularity function) was chosen because, 

with a speed of V=20m/s, it leads to a dominant forcing frequency in the bounce 

force of 1,33Hz, which is approximately equal to the vehicle fourth mode of 

vibration. Thus, although this frequency is not resonant with respect to the bridge 

deck, it is with respect to the vehicle and leads to larger amplitude bounce-force. 

The reverse situation is, in principle, also worth of a study. That is, taking n=11,7 

the bounce force will be almost resonant with the deck first vertical plane mode 

(3,31 Hz), yet away from resonances in the vehicle, which means that the amplitude 

of the bounce force is not as large, although applied at a more dangerous frequency 

for the bridge. It can be seen that, here, the scenario n=5 is more critical and that 

was the reason to choose it here.  
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Table 2: Natural frequencies 

Modes
Deck Frequencies 

[Hz]

Vehicle 

Frequencies [Hz]

1° 3.307 0.645

2° 10.460 1.215

3° 10.560 1.230

4° 14.970 1.334

5° 16.300 1.667

6° 16.730 9.044

7° 17.410 9.055

8° 17.670 11.720

9° 18.160 11.720

10° 18.480 15.480

11° 18.830 15.480

12° 20.000 21.960

13° 21.600 21.960

14° 21.970 24.990

15° 22.620 24.990  

The contact forces determined with the assumption of rigid deck are shown 

in Figure 9. It should be mentioned that these forces correspond to the steady-state 

portion of the diagrams shown in Figure 9 and that the dominant forcing frequency 

is 1.33 Hz, coinciding with the frequency of the fourth mode of vibration of the 

vehicle. 

Once the contact forces are available, they can be applied to the 3D-beam 

model to carry out the dynamics analysis (transient analysis in ADINA), thus 

supplying displacements and internal forces as time histories. It is to be recalled 

here, that the deck response was obtained under the assumption of a rigid structure 

under the rails, which is not precise, since displacements did occur in the deck and 

were even estimated when the contact forces were applied to the structural model. 

It is precisely to evaluate how good or bad was the assumption of a rigid 

structure to obtain the contact forces, that an iterative procedure is followed here to 

make new and better estimates of the contact forces and of the deck displacements. 

This is how it goes: 

1st step: determination of the deck displacements for the contact forces with 

rigid structure underneath (this is already an available output!); 

2nd step: deck displacements obtained in 1st step are added to the rail 

irregularity functions, at each position x=Vt along the bridge and each time t, to 

produce an “equivalent irregularity” function; 

3rd step: new contact forces are obtained from the dynamic analysis of the 

vehicle, under support excitation provided by the “equivalent irregularity” function 

of 2nd step; 
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4th step: determination of the deck displacements for the contact forces of 

3rd step; 

5th step: deck displacements obtained in 4th step are added to the rail 

irregularity functions, at each position x=Vt along the bridge and each time t, to 

produce an “equivalent irregularity” function. 

The procedure is repeated until convergence is achieved between the results 

of iterations “i” and“i-1”. 

-120

-80

-40

0

40

80

120

160

0 4 8 12

Fy
 [

kN
]

Time [s]

Contact force - Fy

 

-750

-700

-650

-600

-550

-500

-450

0 4 8 12

Fz
 [k

N
]

Time [s]

Contact force - Fz

 

-1.700

-1.600

-1.500

-1.400

-1.300

-1.200

-1.100

0 4 8 12

M
x 

[k
N

.m
]

Time [s]

Contact force - Mx

 

Figure 9: Contact forces – iteration i=0 

In this case study, four iterations were carried out. For the sake of brevity, 

only the results of the “zero” and the fourth iteration are displayed, in Figure  and 

Figure4. 
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Figure 10: Results for iteration i=0 (contact forces for rigid structure) 
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Figure4: Results for iteration i=4 
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To check the iterative-procedure convergence, it was found useful to focus 

attention on the bounce force Fz, whose frequency-domain spectra are shown in 

Figures 12-16. 
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Figure 5: Frequency-domain spectrum for Fz – iteration i=0 
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Figure 6: Frequency-domain spectrum for 

Fz – iteration i=1 

Figure 7: Frequency-domain spectrum 

for Fz–iteration i=2 
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Figure 8: Frequency-domain spectrum for 

Fz–iteration i=3 

Figure 9: Frequency-domain spectrum 

for Fz – iteration i=4 

Here, analogously to [6], the SRSS estimate, defined with respect to the 

spectra of Figures 12-16, is used to assess the deviations between any iteration i and 

the iteration i=0 (rigid structure assumption), as indicated in equation (3): 
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Table 3 displays the computed deviations with respect to the iteration i=0 

(rigid structure assumption) and also with respect to the previous iteration. It is 

readily noticed that after only four iterations the deviations with respect to the 

previous iteration were reduced to the order of 0,001%! Even more remarkable, are 

the very small deviations of all iterations with respect to the original hypothesis of 

rigid structure to evaluate the contact forces: in fact it is less than 2%, from the first 

iteration onwards. It could be said that in this case study the results for i=0 are 

sufficiently accurate for design purposes. 

Table 3: Deviations between iterations (i,0) and (i,i-1)

 

Iteration Deviation (i,0)% Iteration Deviation (i,i-1)%

0 - 1 1.934 0 - 1 1.934

0 - 2 1.883 1 - 2 -0.051

0 - 3 1.911 2 - 3 0.028

0 - 4 1.911 3 - 4 -0.001

 
Good matching is also observed between the estimates for displacements and 

internal forces of the structural model, when iteration i=4  is compared with i=0, 

as shown in Table 4: 

Table 4: Results for the structural model (iterations i=0 and i=4) 

-1222.52 -1256.62

-64.04 -64.04

-24912.90 -24831.80

-38.13 -38.01

7.83 7.83

-8.80 -8.80

2851.86 2857.16

2884.38 2890.30

Z-reaction in node 1

Z-reaction in node 2

Iteration 0 Iteration 4Internal forces

Torsion moment

Horizontal bending moment

Vertical bending moment

Vertical displacement

Y-reaction in node 1

Y-reaction in node 2
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