SnakeFace: a transfer learning based app for snake classification
DOI:
https://doi.org/10.5335/rbca.v15i3.15028Keywords:
biology, bioinformatics, deep learning, Snakes, tensorflow, JavaScript, transfer learningAbstract
Introduction: deep learning emerged in 2012 as one of themost important machine learning technologies, reducing image identification error from25% to 5%. This article has two goals: 1) to demonstrate to the general public the ease of building state-of-the-art machine learningmodels without coding expertise; 2) to present a basicmodel adaptable to any biological image identification, such as species identification. Method: We present three test-of-conceptmodels that
showcase distinct perspectives of the app. Themodels aim at separating images into classes such as genus, species, and subspecies, and the input images can be easily adapted for different cases. We have applied deep learning and transfer learning using TeachableMachine. Results: Our basicmodels demonstrate high accuracy in identifying different species
based on images, highlighting the potential for thismethod to be applied in biology. Discussions: the presentedmodels showcase the ease of using machine learning nowadays for image identification. Furthermore, the adaptability of this method to various species and genuses emphasizes its importance in the biological fields, as root for inspiring collaborations with computer science. On our, future collaborations could lead to increasingly accurate and efficient
models in this arena using well-curated datasets.
Downloads
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Todos os artigos estão licenciados com a licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional. Autores que publicam nesta revista concordam com os seguintes termos:
a) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).