A study about Explainable Articial Intelligence: using decision tree to explain SVM
DOI:
https://doi.org/10.5335/rbca.v12i1.10247Keywords:
caixa preta, inteligência artificial explicável, interpretabilidade, explicabilidade, transparênciaAbstract
The technologies supporting Artificial Intelligence (AI) have advanced rapidly over the past few years and AI is becoming a commonplace in every aspect of life like the future of self-driving cars or earlier health diagnosis. For this to occur shortly, the entire community stands in front of the barrier of explainability, an inherent problem of latest models (e.g. Deep Neural Networks) that were not present in the previous hype of AI (linear and rule-based models). Most of these recent models are used as black boxes without understanding partially or even completely how different features influence the model prediction avoiding algorithmic transparency. In this paper, we focus on how much we can understand the decisions made by an SVM Classifier in a post-hoc model agnostic approach. Furthermore, we train a tree-based model (inherently interpretable) using labels from the SVM, called secondary training data to provide explanations and compare permutation importance method to the more commonly used measures such as accuracy and show that our methods are both more reliable and meaningful techniques to use. We also outline the main challenges for such methods and conclude that model-agnostic interpretability is a key component in making machine learning more trustworthy.
Downloads
Downloads
Published
Issue
Section
License

Todos os artigos estão licenciados com a licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional. Autores que publicam nesta revista concordam com os seguintes termos:
a) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).