A genetic algorithm using Calinski-Harabasz index for automatic clustering problem
DOI:
https://doi.org/10.5335/rbca.v12i3.11117Keywords:
Função de Avaliação, Índice CH, Problema de Agrupamento AutomáticoAbstract
Data clustering is a technique that aims to represent a dataset in clusters according to their similarities. In clustering algorithms, it is usually assumed that the number of clusters is known. Unfortunately, the optimal number of clusters is unknown for many applications. This kind of problem is called Automatic Clustering. There are several cluster validity indexes for evaluating solutions, it is known that the quality of a result is influenced by the chosen function. From this, a genetic algorithm is described in this article for the resolution of the automatic clustering using the Calinski-Harabasz Index as a form of evaluation. Comparisons of the results with other algorithms in the literature are also presented. In a first analysis, fitness values equivalent or higher are found in at least 58% of cases for each comparison. Our algorithm can also find the correct number of clusters or close values in 33 cases out of 48. In another comparison, some fitness values are lower, even with the correct number of clusters, but graphically the partitioning are adequate. Thus, it is observed that our proposal is justified and improvements can be studied for cases where the correct number of clusters is not found.
Downloads
Downloads
Published
Issue
Section
License

Todos os artigos estão licenciados com a licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional. Autores que publicam nesta revista concordam com os seguintes termos:
a) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).