Reinforcement learning control of robot manipulator
DOI:
https://doi.org/10.5335/rbca.v13i3.12091Keywords:
Reinforcement Learning, Robotics, Artificial Intelligence, Deep Neural NetworksAbstract
Since the establishment of robotics in industrial applications, industrial robot programming involves the
repetitive and time-consuming process of manually specifying a fixed trajectory, which results in machine
idle time in terms of production and the necessity of completely reprogramming the robot for different tasks.
The increasing number of robotics applications in unstructured environments requires not only intelligent but
also reactive controllers, due to the unpredictability of the environment and safety measures respectively. This paper presents a comparative analysis of two classes of Reinforcement Learning algorithms, value iteration (Q-Learning/DQN) and policy iteration (REINFORCE), applied to the discretized task of positioning a robotic manipulator in an obstacle-filled simulated environment, with no previous knowledge of the obstacles’ positions or of the robot arm dynamics. The agent’s performance and algorithm convergence are analyzed under different reward functions and on four increasingly complex test projects: 1-Degree of Freedom (DOF) robot, 2-DOF robot, Kuka KR16 Industrial robot, Kuka KR16 Industrial robot with random setpoint/obstacle placement. The DQN algorithm presented significantly better performance and reduced training time across all test projects and the third reward function generated better agents for both algorithms.
Downloads
Downloads
Published
Issue
Section
License

Todos os artigos estão licenciados com a licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional. Autores que publicam nesta revista concordam com os seguintes termos:
a) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).