Implementation and comparison of machine learning techniques applied to predict the development of aphid populations
DOI:
https://doi.org/10.5335/rbca.v15i3.13467Keywords:
Artificial neural networks, Decision tree, Exploratory Data, Knowledge extraction, Linear Regression, Random ForestAbstract
Insects have an important degree of collaboration for the maintenance of the ecosystem on the planet. However, after reaching a certain population level and causing damage to plants, some insects are considered as pests and represent a threat to agriculture. Aphids insects that has characteristics to reach this state as it has a high biotic potential and can cause different types of damage to plants. Climatic data as precipitation, winds and temperatures affect the population quantity of these insects. Therefore, this work proposes to apply different machine learning techniques with the objective to verify the existing correlation between climatic variables and the population dynamics of aphids. It can be concluded that variables such as precipitation, temperature, number of days when it rains in the week and climatic phenomena such as El niño and La niña have an influence on the aphid population. During the work, four models were developed in order to predict the population of these insects. The accuracy of the prediction model developed were 11.4% for Linear Regression; 26.4% for the Artificial Neural Network model; 29.3% for Decision Tree and 41.4% for Random Forest.
Downloads
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Todos os artigos estão licenciados com a licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional. Autores que publicam nesta revista concordam com os seguintes termos:
a) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).