Data Augmentation policies and heuristics effects over dataset imbalance for developing plant identification systems based on Deep Learning: A case study.
DOI:
https://doi.org/10.5335/rbca.v14i2.13487Keywords:
Data Augmentation, Deep Learning, Plant RecognitionAbstract
Data augmentation (DA) is a widely known strategy for effectiveness improvement in computer vision models such as Deep Convolutional Neural Networks (DCNN). Although it enables improving model generalization by increasing data diversity, in this work we propose to investigate its effects with respect to two different sources of dataset imbalance (i.e., Content and Sampling imbalance) in a plant species recognition task. We systematically evaluated several techniques to generate the augmented datasets used to train the DCNN models that enabled a thorough investigation over the effects of DA in terms of imbalance attenuation. The results allowed inferring that data augmentation enables mitigating the negative effects related to underrepresentation mainly caused by the dataset imbalance.
Downloads
Downloads
Published
Issue
Section
License

Todos os artigos estão licenciados com a licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional. Autores que publicam nesta revista concordam com os seguintes termos:
a) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).