GRSR - a guideline for reporting studies results for machine learning applied to Electroencephalogram data
DOI:
https://doi.org/10.5335/rbca.v15i2.14338Keywords:
Machine Learning, Electroencephalogram, standard presentation, ML, EEGAbstract
Background: The last decade was marked by increased neuroscience research involving machine Learning (ML) and medical images such as functional magnetic resonance and electroencephalogram (EEG). There are many challenges in this research field, including the need for more data and a standard for presenting the results. Since ML models tend to be sensitive to the input data, different strategies for data acquisition, preprocessing, feature selection, and validation significantly impact the results achieved. Therefore, a significant variation while presenting the results makes it challenging to compare the results. Results: This work aims to tackle the lack of a standard model by presenting a guideline, conform Quadas-2, that covers the most critical data for studies to demonstrate when using EEG and ML for addressing neurological disorders. Conclusions: This guideline allows a structural presentation of the primary data of studies using ML applied to EEG, improving comparison between studies while also allowing fair comparisons.
Downloads
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Todos os artigos estão licenciados com a licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional. Autores que publicam nesta revista concordam com os seguintes termos:
a) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).