Inteligência computacional aplicada à detecção de câncer de mama

Authors

  • Leomar Santos Marques Departamento de engenharia de sistemas e automação, Programa de Pós-Graduação em Engenharia de Sistemas e Automação, Universidade Federal de Lavras - UFLA
  • Ricardo Rodrigues Magalhães Programa de Pós-Graduação em Engenharia de Sistemas e Automação (PPGESISA), UFLA
  • Danton Diego Ferreira Programa de Pós-Graduação em Engenharia de Sistemas e Automação (PPGESISA), UFLA

DOI:

https://doi.org/10.5335/rbca.v11i1.8727

Keywords:

Breast Cancer; Neuro-Fuzzy; Neural Networks

Abstract

Breast cancer has a high death rate worldwide, and the most frequent in women, its diagnosis having been performed through screening, breast ultrasound and mammograms.
This work aims to develop a classifier to identify breast cancer using only anthropometric data and some parameters of a simple routine blood test that are the biomarkers.The MLP Neural Networks and Neuro-Fuzzy Networks (ANFIS) were used for a decision committee. This work demonstrates a breakthrough in the area of computational intelligence due to the good result of its classification of breast cancer, which was 97\% accurate, a higher value presented compared to the works of the last years that used similar biomarkers in the period of 2013 to the start of the year 2018.

 

 

 

Downloads

Download data is not yet available.

Published

2019-04-15

Issue

Section

Original Paper

How to Cite

[1]
2019. Inteligência computacional aplicada à detecção de câncer de mama. Brazilian Journal of Applied Computing. 11, 1 (Apr. 2019), 28–35. DOI:https://doi.org/10.5335/rbca.v11i1.8727.