Unconstrained numerical optimization using real-coded genetic algorithms: a study case using benchmark functions in R from Scratch
Inglês
DOI:
https://doi.org/10.5335/rbca.v11i3.9047Keywords:
Benchmark Functions, Genetic Algorithms, Numerical Optimization, Real-Coded, UnconstrainedAbstract
Unconstrained numerical problems are common in solving practical applications that, due to its nature, are usually devised by several design variables, narrowing the kind of technique or algorithm that can deal with them. An interesting way of tackling this kind of issue is to use an evolutionary algorithm named Genetic Algorithm. In this context, this work is a tutorial on using real-coded genetic algorithms for solving unconstrained numerical optimization problems. We present the theory and the implementation in R language. Five benchmarks functions (Rosenbrock, Griewank, Ackley, Schwefel, and Alpine) are used as a study case. Further, four different crossover operators (simple, arithmetical, non-uniform arithmetical, and Linear), two selection mechanisms (roulette wheel and tournament), and two mutation operators (uniform and non-uniform) are shown. Results indicate that non-uniform mutation and tournament selection tend to present better outcomes.
Downloads
Downloads
Published
Issue
Section
License

Todos os artigos estão licenciados com a licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional. Autores que publicam nesta revista concordam com os seguintes termos:
a) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).