Missing data analysis using machine learning methods to predict the performance of technical students
DOI:
https://doi.org/10.5335/rbca.v12i2.10565Palavras-chave:
Missing Data Treatment Methods, Machine Learning, Evaluation of algorithmsResumo
O aprendizado de máquina (ML) tornou-se uma tecnologia emergente capaz de resolver problemas em muitas áreas, incluindo educação, medicina, robótica e aeroespacial. O ML é um campo específico de inteligência artificial que projeta modelos computacionais capazes de aprender com os dados. No entanto, para desenvolver um modelo de ML, é necessário garantir a qualidade dos dados, pois os dados do mundo real são incompletos, ruídosos e inconsistentes. Este artigo avalia métodos avançados de tratamento de dados ausentes usando algoritmos ML para classificar o desempenho de estudantes do ensino médio do Instituto Federal de Goiânia como no Brasil. O objetivo é fornecer uma ferramenta computacional eficiente para auxiliar o desempenho educacional que permite aos educadores verificar a tendência do aluno a reprovar. Os resultados indicam que o método de ignorar e descartar supera outros métodos de tratamento de dados ausentes. Além disso, os testes revelam que a Otimização Mínima Sequencial, Redes Neurais e Bagging superam os outros algoritmos de ML, como Naive Bayes e Árvore de Decisão, em termos de precisão de classificação.
Downloads
Downloads
Publicado
Edição
Seção
Licença

Todos os artigos estão licenciados com a licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional. Autores que publicam nesta revista concordam com os seguintes termos:
a) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).