Previsão de inflação com o uso de Inteligência Artificial
DOI:
https://doi.org/10.5335/rbca.v13i2.12584Palavras-chave:
Núcleo de inflação, previsão, redes neuraisResumo
A inflação é um aumento generalizados dos preços em uma economia. Pequenas taxas de inflação são naturais; entretanto, a incerteza causada pela volatilidade da inflação dificulta o delineamento de políticas monetárias. No Brasil, adota-se o IPCA como meta de inflação; entretanto, o uso de núcleos de inflação como meta possibilitaria o delineamento de políticas monetárias menos rígidas e menos suscetíveis à choques externos. Neste trabalho, propõe-se a construção de núcleos de inflação baseados em wavelets, uma vez que em contextos inflacionários apresentam melhor desempenho na análise da tendência quando comparados com núcleos de inflação usuais. Para a previsão, adotam-se técnicas de inteligência artificial, como as redes neurais. O uso de redes neurais possibilita lidar com problemas altamente complexos, os quais nem sempre podem ser descritos por modelos analíticos. Delimitam-se as estimativas prováveis das previsões futuras através de intervalos de confiança. Dentre as principais conclusões do trabalho, salienta-se que os núcleos de inflação baseados em wavelets possuem menores intervalos de confiança, além de apresentarem menores erros na construção da rede neural. Verifica-se, ainda, que as previsões geradas pelos núcleos de inflação são suavizações da inflação, permitindo identificar a tendência da inflação para um horizonte de até doze meses.
Downloads
Downloads
Publicado
Edição
Seção
Licença

Todos os artigos estão licenciados com a licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional. Autores que publicam nesta revista concordam com os seguintes termos:
a) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).