A framework for data compression and damage detection in structural health monitoring applied on a laboratory three-story structure
DOI:
https://doi.org/10.5335/rbca.v8i2.5703Palavras-chave:
Framework, Data Compression, Damage Detection, Environmental Effects, Operational Effects, Structural Health MonitoringResumo
Structural Health Monitoring (SHM) is an important technique used to preserve many types of structures in the short and long run, using sensor networks to continuously gather the desired data. However, this causes a strong impact in the data size to be stored and processed. A common solution to this is using compression algorithms, where the level of data compression should be adequate enough to allow the correct damage identification. In this work, we use the data sets from a laboratory three-story structure to evaluate the performance of common compression algorithms which, then, are combined with damage detection algorithms used in SHM. We also analyze how the use of Independent Component Analysis, a common technique to reduce noise in raw data, can assist the detection performance. The results showed that Piecewise Linear Histogram combined with Nonlinear PCA have the best trade-off between compression and detection for small error thresholds while Adaptive PCA with Principal Component Analysis perform better with higher values.Downloads
Os dados de download ainda não estão disponíveis.
Downloads
Publicado
01-09-2016
Edição
Seção
Artigo Original
Licença

Todos os artigos estão licenciados com a licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional. Autores que publicam nesta revista concordam com os seguintes termos:
a) Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
b) Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
c) Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O Efeito do Acesso Livre).
Como Citar
[1]
2016. A framework for data compression and damage detection in structural health monitoring applied on a laboratory three-story structure. Revista Brasileira de Computação Aplicada. 8, 2 (set. 2016), 129–143. DOI:https://doi.org/10.5335/rbca.v8i2.5703.