PHYSICAL-CHEMICAL ANALYSIS OF HARD AND SOFT CANDIES AND THEIR DEMINERALIZING EFFECT IN BOVINE ENAMEL

Authors

  • Ana Caroline Magalhães Neri Sande UFBA
  • Elis Rodrigues Oliveira Barbosa Barbosa
  • Rafaela Silva Oliveira
  • Elisângela de Jesus Campos

DOI:

https://doi.org/10.5335/rfo.v26i1.12632

Keywords:

Erosão dentária, Cárie Dentária, Doces, Esmalte dentário

Abstract

Objective: Evaluate the cariogenic potential of hard and soft candies and their demineralizing potential in bovine enamel after erosive cycle. Methods: Hard candies (HC) from different brands were selected: Tic-Tac®, Halls® and IceKiss® and the soft candies (SC): Lílith®, Azedinha®, Mentos Rainbow®, and Dori Gomets®. For the physical-chemical analysis, the candies were dissolved in distilled water (1:10) and the pH, the titratable acidity (ATT), and the presence of total soluble solids (SST/°Brix) were determined. In the erosive test, 40 bovine enamel specimens were divided into four groups (n=10): GCN: artificial saliva; GCP: hydrochloric acid, GT1: Lílith® green apple candy solution; GT2: IceKiss® extra strong candy solution. The acid challenge was performed for 2 minutes, 4x per day, with 2 hours of immersion in artificial saliva for five days. Results: pH values for HC ranged from 2.88 to 5.53 and for SC ranged from 2.73 to 4.16. ATT at pH 5.5 varied from 0.07 mL to 39.40 mL of NaOH 0.1 N for HC and 1.53 mL to 35.83 mL for SC. ATT at pH 7,0 varied from 0.2 mL to 49.13 mL of 0.1 N NaOH for HC and from 2.37 mL to 49.97 mL for SC. The content of SST of all HC was higher than 8.5 °Brix and for SC, varied between 5.3 to 8.83 °Brix. The GCP group showed greater demineralization than GCN and GT2 (p<0.05). Conclusion: Most HC and SC dissolved in distilled water were potentially erosive and cariogenic.

KEY-WORDS: Tooth erosion. Dental caries. Candy. Dental enamel

Downloads

Download data is not yet available.

References

1. Hoppe CD, Mallmann PR, Oliveira EC. Determinação de umidade em balas duras e balas mastigáveis. Revista Destaques Acadêmicos. 2015;7(4). [Internet]. [citado 8 de novembro de 2020]. Disponível em http://www.univates.com.br/revistas/index.php/destaques/article/view/511.
2. São Paulo. DECRETO Nº 12.486, DE 20 DE OUTUBRO DE 1978. Aprova Normas Técnicas Especiais relativas a Alimentos e Bebidas. Diário Oficial Estado de São Paulo, São Paulo, 21 out 1978. [Internet]. [citado 8 de novembro de 2020]. Disponível em:https://www.al.sp.gov.br/repositorio/legislacao/decreto/1978/decreto-1248620.10.1978.html#:~:text=As%20presentes%20Normas%20T%C3%A9cnicas%20Especiais,constantes%20da%20legisla%C3%A7%C3%A3o%20federal%20vigente.
3. Brasil. Ministério da Saúde. Portaria nº 540, de 27 de outubro de 1997. Diário Oficial da República Federativa do Brasil 28 out 1997.
4. Aun M, Lima C, Philippi J, Kalil J, Agondi R, Motta A. Aditivos em alimentos. Rev. bras. alergia imunopatol. 2011;5:177–86.
5. Brasil. Instituto Brasileiro de Geografia e Estatística. Pesquisa nacional de saúde do escolar, 2015. Rio de Janeiro: IBGE; 2016. 126 p.
6. Kidd E, Fejerskov O. Changing concepts in cariology: forty years on. Dent Update. 2013;40(4):277–286.
7. Peres MA, Sheiham A, Liu P, Demarco FF, Silva AER, Assunção MC, et al. Sugar Consumption and Changes in Dental Caries from Childhood to Adolescence. Journal of Dental Research. 2016;95(4):388–94.
8. Carvalho T, Lussi A. Chapter 9: Acidic Beverages and Foods Associated with Dental Erosion and Erosive Tooth Wear. The Impact of Nutrition and Diet on Oral Health. Monogr Oral Sci. 2020;28:91–8.
9. Dawes C. What Is the Critical pH and Why Does a Tooth Dissolve in Acid? J Can Dent Assoc. 2003;69(11):722–4.
10. Nahás PCMS, Nahás PCF, Nahás PCJP, Murakami C, Mendes FM. Prevalence and associated factors of dental erosion in children and adolescents of a private dental practice. Int J Paediatr Dent. 2011;21(6):451–8.
11. Oliveira GC de, Tereza GPG, Boteon AP, Ferrairo BM, Gonçalves PSP, Silva TC da, et al. Susceptibility of bovine dental enamel with initial erosion lesion to new erosive challenges. PLoS ONE. 2017;12(8): https://doi.org/10.1371/journal.pone.0182347.
12. Magalhães AC, Levy FM, Rios D, Buzalaf MAR. Effect of a single application of TiF(4) and NaF varnishes and solutions on dentin erosion in vitro. J Dent. 2010;38(2):153–7.
13. Alexander SA, Ripa LW. Effects of Self-Applied Topical Fluoride Preparations in Orthodontic Patients. Angle Orthod. 2000;70(6):424–30
14. Shen P, Walker GD, Yuan Y, Reynolds C, Stacey MA, Reynolds EC. Food acid content and erosive potential of sugar-free confections. Aust Dent J. 2017;62(2):215–22.
15. Rita MR, Farias MMAG, Silveira EG da. Potencial erosivo de pastilhas e balas duras “zero açúcar” dissolvidas em água e saliva artificial. Rev. Odontol. Univ. São Paulo. 2018;30(3):246–55.
16. Farias MMAG, Ramos BLM, Silveira EG. Avaliação do potencial erosivo de balas duras. Rev Odontol Bras Central. 2016;25(74):135–8.
17. Wagoner SN, Marshall TA, Qian F, Wefel JS. In vitro enamel erosion associated with commercially available original and sour candies. J Am Dent Assoc. 2009;140(7):906–13.
18. Brand HS, Gambon DL, Bultuis MS, Veerman CI, Amerongen AV. The erosive potential of lollipops. Int J Dent Hyg. 2009;59(6):358–62.
19. Shellis RP, Barbour ME, Jesani A, Lussi A. Effects of buffering properties and undissociated acid concentration on dissolution of dental enamel in relation to pH and acid type. Caries Res. 2013;47(6):601–11.
20. Featherstone JDB, Lussi A. Understanding the chemistry of dental erosion. Monogr Oral Sci. 2006;20:66–76.
21. Brand HS, Gambon DL, Van Dop LF, Van Liere LE, Veerman ECI. The erosive potential of jawbreakers, a type of hard candy. Int J Dent Hyg. 2010;8(4).308-12.
22. Ball DW. Concentration Scales for Sugar Solutions. J Chem Educ. 2006;83(10):1489-91.
23. Aires CP, Tabchoury CPM, Cury AADB, Koo H, Cury JA. Effect of Sucrose Concentration on Dental Biofilm Formed in situ and on Enamel Demineralization. Caries Res. 2006;40(1):28–32.
24. Díaz-Garrido N, Lozano C, Giacaman RA. Frequency of sucrose exposure on the cariogenicity of a biofilm-caries model. Eur J Dent. 2016;10(3):345–50.
25. Cai J-N, Jung J-E, Dang M-H, Kim M-A, Yi H-K, Jeon J-G. Functional Relationship between Sucrose and a Cariogenic Biofilm Formation. PLoS One. 2016;11(6):e0157184. DOI: 10.1371/journal.pone.0157184.
26. Arango-Santander S, Montoya C, Pelaez-Vargas A, Ossa EA. Chemical, structural and mechanical characterization of bovine enamel. Arch Oral Biol. 2020; 109:104573.
27. Carvalho TS, Schmid TM, Baumann T, Lussi A. Erosive effect of different dietary substances on deciduous and permanent teeth. Clin Oral Investig.2017;21(5):1519–26.
28. Lussi A, Carvalho TS. Analyses of the Erosive Effect of Dietary Substances and Medications on Deciduous Teeth. PLoS ONE. 2015;10(12). DOI:10.1371/journal.pone.01439

Published

2023-11-06

Issue

Section

Investigação Científica

How to Cite

PHYSICAL-CHEMICAL ANALYSIS OF HARD AND SOFT CANDIES AND THEIR DEMINERALIZING EFFECT IN BOVINE ENAMEL. (2023). Revista Da Faculdade De Odontologia - UPF, 26(1), 7-16. https://doi.org/10.5335/rfo.v26i1.12632