Modification of titanium surfaces by cathodic polarization: a promising technique for enhancing osseointegration
DOI:
https://doi.org/10.5335/rfo.v30i1.16647Keywords:
Titanium, Osseointegration, Biocompatible materials, Electrochemical TechniqueAbstract
Titanium implants represent successful alternatives for bone and dental replacement in healthy patients. Modifications on the surface can increase their bioactivity and bone regeneration, with a consequent impact on the implant survival rate, and the modification technique used can impact the cellular response. The aim of this study was to characterized titanium surfaces modified by the cathodic polarization method with different current densities and exposure times. Seventy-two blocks of pretreated pure titanium were used and randomly allocated in four experimental groups, being 18 samples for group. The cathodic polarization process was conducted in a solution of acetic acid and sodium acetate (pH 3), being the titanium specimens used as cathode and a rectangular platinum as anode at a controlled temperature of 22°C. The current densities were 1.6 mA/cm2 and 4.5 mA/cm2 and the exposure times were 2h and 4h. Samples were dried and maintained in a Nitrogen vacuum chamber. The modified titanium samples were topographically characterized using Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Energy Dispersion X-Ray Spectroscopy (EDX). Water contact angles formed in the surface of the titanium were measured with a tensiometer (ThetaLite TL101; Biolin Scientific Inc., Finland) using the sessile drop method, in four different times in minutes: t=0, t=15, t=30 and t=45. The contact angle formed between the water droplet and the surface was monitored in real time for 60 seconds. AFM and SEM analysis showed rougher surfaces in the modified groups. EDX data revealed the presence of sodium, carbon, and titanium mainly. The Wettability test indicated that all groups showed contact angles with less than 90°. The Control Group and Group 3 showed higher contact angles, around 76° to 71° and Groups 1 and 2 lower contact angles, around 66° to 63° respectively. The topography analysis showed higher roughness in the groups with higher current density and exposure time. The electrochemical cathodic polarization technique modified the titanium surfaces, as current density and exposure time influenced the roughness and wettability of the treated titanium surface, properties that could enhance osseointegration.
Downloads
References
Roumanas E. D. (2009). The social solution-denture esthetics, phonetics, and function. Journal of prosthodontics: official journal of the American College of Prosthodontists, 18(2), 112–115. https://doi.org/10.1111/j.1532-849X.2009.00440.x
Heydecke, G., Locker, D., Awad, M. A., Lund, J. P., & Feine, J. S. (2003). Oral and general health-related quality of life with conventional and implant dentures. Community dentistry and oral epidemiology, 31(3), 161–168. https://doi.org/10.1034/j.1600-0528.2003.00029.x
Polzer, I., Schimmel, M., Müller, F., & Biffar, R. (2010). Edentulism as part of the general health problems of elderly adults. International dental journal, 60(3), 143–155.
Einy, S., Abdel Rahman, N., Siman-Tov, M., Aizenbud, D., & Peleg, K. (2016). Maxillofacial Trauma Following Road Accidents and Falls. The Journal of craniofacial surgery, 27(4), 857–861. https://doi.org/10.1097/SCS.0000000000002555
Hino, S., Yamada, M., Araki, R., Kaneko, T., & Horie, N. (2019). Effects of loss of consciousness on maxillofacial fractures in simple falls. Dental traumatology : official publication of International Association for Dental Traumatology, 35(1), 48–53. https://doi.org/10.1111/edt.12452
Gamonal, J. A., Lopez, N. J., & Aranda, W. (1998). Periodontal conditions and treatment needs, by CPITN, in the 35-44 and 65-74 year-old population in Santiago, Chile. International dental journal, 48(2), 96–103. https://doi.org/10.1111/j.1875-595x.1998.tb00467.x
Beppu, K., Kido, H., Watazu, A., Teraoka, K., & Matsuura, M. (2013). Peri-implant bone density in senile osteoporosis-changes from implant placement to osseointegration. Clinical implant dentistry and related research, 15(2), 217–226. https://doi.org/10.1111/j.1708-8208.2011.00350.x
Global Burden of Disease Study 2013 Collaborators (2015). Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet (London, England), 386(9995), 743–800. https://doi.org/10.1016/S0140-6736(15)60692-4
Scheller, E. L., Krebsbach, P. H., & Kohn, D. H. (2009). Tissue engineering: state of the art in oral rehabilitation. Journal of oral rehabilitation, 36(5), 368–389. https://doi.org/10.1111/j.1365-2842.2009.01939.x
Roncalli A. G. (2011). National oral health survey in 2010 shows a major decrease in dental caries in Brazil. Cadernos de saude publica, 27(1), 4–5. https://doi.org/10.1590/s0102-311x2011000100001
Bijukumar, D. R., McGeehan, C., & Mathew, M. T. (2018). Regenerative Medicine Strategies in Biomedical Implants. Current osteoporosis reports, 16(3), 236–245. https://doi.org/10.1007/s11914-018-0441-0
Bornstein MM, Cionca N, Mombelli A. (2009). Systemic conditions and treatments as risks for implant therapy. Int J Oral Maxillofac Implants. 24(Suppl):12-27.
Chee W, Jivraj S. (2007). Failures in implant dentistry. Br Dent J. 202(3):123-129. https://doi.org/10.1038/bdj.2007.74
Hwang D, Wang HL. (2006) Medical contraindications to implant therapy: part I: absolute contraindications. Implant Dent. 15(4):353-360. https://doi.org/10.1097/01.id.0000247855.75691.03
Kim, K. T., Eo, M. Y., Nguyen, T., & Kim, S. M. (2019). General review of titanium toxicity. International journal of implant dentistry. 5(1), 10. https://doi.org/10.1186/s40729-019-0162-x
Quinn J, Mcfadden R, & Chan C, Carson L. (2020). Titanium for Orthopedic Applications: An Overview of Surface Modification to Improve Biocompatibility and Prevent Bacterial Biofilm Formation. iScience. 23(11):101745. https://doi.org/10.1016/j.isci.2020.101745
Sidambe A. T. (2014). Biocompatibility of Advanced Manufactured Titanium Implants-A Review. Materials (Basel, Switzerland), 7(12), 8168–8188. https://doi.org/10.3390/ma7128168
Alcazar, J. C., Salas, M. M., Conde, M. C., Chisini, L. A., Demarco, F. F., Tarquinio, S. B., & Carreño, N. L. (2016). Electrochemical Cathodic Polarization, a Simplified Method That Can Modified and Increase the Biological Activity of Titanium Surfaces: A Systematic Review. PloS one, 11(7), e0155231. https://doi.org/10.1371/journal.pone.0155231
Alghamdi, H. S., & Jansen, J. A. (2013). Bone regeneration associated with nontherapeutic and therapeutic surface coatings for dental implants in osteoporosis. Tissue engineering. Part B, Reviews, 19(3), 233–253. https://doi.org/10.1089/ten.TEB.2012.0400
Richards, R. G., Moriarty, T. F., Miclau, T., McClellan, R. T., & Grainger, D. W. (2012). Advances in biomaterials and surface technologies. Journal of orthopaedic trauma, 26(12), 703–707. https://doi.org/10.1097/BOT.0b013e31826e37a2
Pedro, R. E., De Carli, J. P., Linden, M. S., Lima, I. F., Paranhos, L. R., Costa, M. D., & Bós, . J. (2017). Influence of Age on Factors associated with Peri-implant Bone Loss after Prosthetic Rehabilitation over Osseointegrated Implants. The journal of contemporary dental practice, 18(1), 3–10. https://doi.org/10.5005/jp-journals-10024-1979
Kim, K. H., & Ramaswamy, N. (2009). Electrochemical surface modification of titanium in dentistry. Dental materials journal, 28(1), 20–36. https://doi.org/10.4012/dmj.28.20
Videm, Ketil & taxt-lamolle, Sebastien & Monjo, Marta & Ellingsen, Jan & Lyngstadaas, Staale & Haugen, Håvard. (2008). Hydride formation on titanium surfaces by cathodic polarization. Applied Surface Science. 255, 3011-3015. https://doi.org/10.1016/j.apsusc.2008.08.090
R. Xing, L. Salou, S. Taxt-Lamolle, J.E. Reseland, S.P. Lyngstadaas, H.J. Haugen. (2014). Surface hydride on titanium by cathodic polarization promotes human gingival fibroblast growth, J. Biomed. Mater. Res. A. 102, 1389-1398. https://doi.org/10.1002/jbm.a.34819
Lamolle SF, Monjo M, Lyngstadaas SP, Ellingsen JE, Haugen HJ. (2009). Titanium implant surface modification by cathodic reduction in hydrofluoric acid: surface characterization and in vivo performance. Journal of biomedical materials research Part A. 88(3):581–8. https://doi.org/10.1002/jbm.a.31898
Jemat, A., Ghazali, M. J., Razali, M., & Otsuka, Y. (2015). Surface Modifications and Their Effects on Titanium Dental Implants. BioMed research international, 2015, 791725. https://doi.org/10.1155/2015/791725
Smeets, R., Stadlinger, B., Schwarz, F., Beck-Broichsitter, B., Jung, O., Precht, C., Kloss, F., Gröbe, A., Heiland, M., & Ebker, T. (2016). Impact of Dental Implant Surface Modifications on Osseointegration. BioMed research international, 2016, 6285620. https://doi.org/10.1155/2016/6285620
Butz, F., Ogawa, T., & Nishimura, I. (2011). Interfacial shear strength of endosseous implants. The International journal of oral & maxillofacial implants, 26(4), 746–751.
Curtis A, Wilkinson C. Topographical control of cells. (1997). Biomaterials. 18(24), 1573-1583. https://doi.org/10.1016/S0142-9612(97)00144-0
Zareidoost, A., Yousefpour, M., Ghaseme, B., & Amanzadeh, A. (2012). The relationship of surface roughness and cell response of chemical surface modification of titanium. Journal of materials science. Materials in medicine, 23(6), 1479–1488. https://doi.org/10.1007/s10856-012-4611-9
Suzuki, K., Aoki, K., & Ohya, K. (1997). Effects of surface roughness of titanium implants on bone remodeling activity of femur in rabbits. Bone. 21(6), 507–514. https://doi.org/10.1016/s8756-3282(97)00204-4
Elias, C. N., Oshida, Y., Lima, J. H., & Muller, C. A. (2008). Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque. Journal of the mechanical behavior of biomedical materials, 1(3), 234–242. https://doi.org/10.1016/j.jmbbm.2007.12.002
Alcázar, J.C.B, Lemos, R.M.J., Conde, M.C.M., Chisini, L.A., Salas, M.M.S, Noremberg, Bruno S. ; Motta, F.V., Demarco, F.F., Tarquinio, S.B.C., Carreño, N.L.V. Preparation, Characterization; Biocompatibility of Different Metal Oxide/PEGâ€Based Hybrid Coating Synthesized by Sol–Gel Dip Coating Method for Surface Modification of Titanium. Prog. Org. Coat, 130:206–213. https://doi.org/10.1016/j.porgcoat.2019.02.007
Narayanan R, Seshadri SK, Kwon TY, Kim KH. (2006). Electrochemical nano-grained calcium phosphate coatings on Ti-6Al-4V for biomaterial applications. Scripta Materialia, 56(3):229–232. doi: 10.1016/j.scriptamat.2006.10.004
Buser, D., Broggini, N., Wieland, M., Schenk, R. K., Denzer, A. J., Cochran, D. L., Hoffmann, B., Lussi, A., & Steinemann, S. G. (2004). Enhanced bone apposition to a chemically modified SLA titanium surface. Journal of dental research, 83(7), 529–533. https://doi.org/10.1177/154405910408300704
Kilpadi, D. V., & Lemons, J. E. (1994). Surface energy characterization of unalloyed titanium implants. Journal of biomedical materials research, 28(12), 1419–1425. https://doi.org/10.1002/jbm.820281206
Pachauri P, Bathala LR, Sangur R. (2014). Techniques for dental implant nanosurface modifications. The journal of advanced prosthodontics, 6(6):498–504. https://doi.org/10.4047/jap.2014.6.6.498
Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. (2007). Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials, 23(7):844–54. https://doi.org/10.1016/j.dental.2006.06.025
Catauro, M., Bollino, F., Papale, F., Mozetic, P., Rainer, A., & Trombetta, M. (2014). Biological response of human mesenchymal stromal cells to titanium grade 4 implants coated with PCL/ZrOâ‚‚ hybrid materials synthesized by sol-gel route: in vitro evaluation. Materials science & engineering. C, Materials for biological applications, 45, 395–401. https://doi.org/10.1016/j.msec.2014.09.007
Zhao, G., Schwartz, Z., Wieland, M., Rupp, F., Geis-Gerstorfer, J., Cochran, D. L., & Boyan, B. D. (2005). High surface energy enhances cell response to titanium substrate microstructure. Journal of biomedical materials research. Part A, 74(1), 49–58. https://doi.org/10.1002/jbm.a.30320
Pegueroles, M., Tonda-Turo, C., Planell, J. A., Gil, F. J., & Aparicio, C. (2012). Adsorption of fibronectin, fibrinogen, and albumin on TiO2: time-resolved kinetics, structural changes, and competition study. Biointerphases, 7(1-4), 48. https://doi.org/10.1007/s13758-012-0048-4
Gittens, R. A., Scheideler, L., Rupp, F., Hyzy, S. L., Geis-Gerstorfer, J., Schwartz, Z., & Boyan, B. D. (2014). A review on the wettability of dental implant surfaces II: Biological and clinical aspects. Acta biomaterialia, 10(7), 2907–2918. https://doi.org/10.1016/j.actbio.2014.03.032
Feller, L., Jadwat, Y., Khammissa, R. A., Meyerov, R., Schechter, I., & Lemmer, J. (2015). Cellular responses evoked by different surface characteristics of intraosseous titanium implants. BioMed research international, 2015, 171945. https://doi.org/10.1155/2015/171945
Steinemann S. G. (1998). Titanium--the material of choice?. Periodontology 2000, 17, 7–21. https://doi.org/10.1111/j.1600-0757.1998.tb00119.x
Textor M, Sittig C, Frauchiger V, Tosatti S, Brunette DM. (2001). Properties and biological significance of natural oxide films on titanium and its alloys. In: In: Brunette DM, Tengvall P, Textor M, Thomsen P, eds. Titanium in medicine. Berlin: Springer, 171-230. https://doi.org/10.1007/978-3-642-56486-4_7
Massaro, C., Rotolo, P., De Riccardis, F., Milella, E., Napoli, A., Wieland, M., Textor, M., Spencer, N. D., & Brunette, D. M. (2002). Comparative investigation of the surface properties of commercial titanium dental implants. Part I: chemical composition. Journal of materials science. Materials in medicine, 13(6), 535–548. https://doi.org/10.1023/a:1015170625506
Morra, M., Cassinelli, C., Bruzzone, G., Carpi, A., Di Santi, G., Giardino, R., & Fini, M. (2003). Surface chemistry effects of topographic modification of titanium dental implant surfaces: 1. Surface analysis. The International journal of oral & maxillofacial implants, 18(1), 40–45.
Hayashi, R., Ueno, T., Migita, S., Tsutsumi, Y., Doi, H., Ogawa, T., Hanawa, T., & Wakabayashi, N. (2014). Hydrocarbon Deposition Attenuates Osteoblast Activity on Titanium. Journal of dental research, 93(7), 698–703. https://doi.org/10.1177/0022034514536578
Aparicio, C., Gil, F. J., Fonseca, C., Barbosa, M., & Planell, J. A. (2003). Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials, 24(2), 263–273. https://doi.org/10.1016/s0142-9612(02)00314-9
Guler, B., Uraz, A., & Çetiner, D. (2019). The chemical surface evaluation of black and white porous titanium granules and different commercial dental implants with energy-dispersive x-ray spectroscopy analysis. Clinical implant dentistry and related research, 21(2), 352–359. https://doi.org/10.1111/cid.12727
Ehrenfest, D.M. & Corso, Marco & Kang, B.S. & Leclercq, P. & Mazor, Ziv & Horowitz, Robert. (2014). Identification card and codification of the chemical and morphological characteristics of 62 dental implant surfaces. POSEIDO. 2. 81-104.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This work is licensed under aCreative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional.
