Oat grains classification using deep learning

Authors

DOI:

https://doi.org/10.5335/rbca.v15i1.13653

Keywords:

Classification, computer vision, deep learning, oat

Abstract

Background: Based on their nutritional benefits, oat is classified as a cereal of great importance for both human and animal feeding. Throughout the production process, species and variety identification are vital for agricultural systems. The present work establishes SeedFlow, a method for image acquisition, processing, and classification of oat grains using deep learning techniques. We apply these techniques to the identification of the grains from the different oat species Avena sativa and Avena strigosa and to classify grains as varieties of Avena sativa, such as UPFA Ouro, UPFA Fuerza, and UPFA Gaudéria. Results: To achieve this proposition, we executed our solution considering six different deep learning architectures to evaluate which model presents the best performance. This approach attained an accuracy of 99.7% for oat species identification and 89.7% for oat varieties classification using DenseNet architecture. Conclusions: As a result, this tool can provide high value for practical quality control applications, and it is feasible to use in pre-screening tests, laboratory analysis pipelines, or computer support tools geared toward breeding programs or intellectual property assessment.

Downloads

Download data is not yet available.

Author Biography

  • Rafael Rieder, Universidade de Passo Fundo

    Rafael Rieder possui graduação de Bacharelado em Informática pela Universidade Regional Integrada do Alto Uruguai e das Missões (URI, 2002), Mestrado em Ciência da Computação pela Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS, 2006), e Doutorado em Ciência da Computação pela mesma instituição (PUCRS, 2011). É docente permanente do Programa de Pós-Graduação em Computação Aplicada (ppgCA) e professor dos cursos de graduação da Universidade de Passo Fundo (UPF). Suas áreas de interesse são Realidade Virtual e Aumentada, Interfaces 3D e Processamento de Imagens.

Downloads

Published

2023-04-25

Issue

Section

Original Paper

How to Cite

[1]
2023. Oat grains classification using deep learning. Brazilian Journal of Applied Computing. 15, 1 (Apr. 2023), 48–58. DOI:https://doi.org/10.5335/rbca.v15i1.13653.